Ectomycorrhizal fungi slow soil carbon cycling

Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2016-08, Vol.19 (8), p.937-947
Hauptverfasser: Averill, Colin, Hawkes, Christine V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 947
container_issue 8
container_start_page 937
container_title Ecology letters
container_volume 19
creator Averill, Colin
Hawkes, Christine V.
description Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free‐living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate.
doi_str_mv 10.1111/ele.12631
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803793673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4113589141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4921-a51df6b2b3e9a57706ee5de8e4aa9f352e31e2d42ac63b6fb046074f22216cf93</originalsourceid><addsrcrecordid>eNp1kE1PwkAQhjdGI4ge_AOmiRc9FPaj3bZHQxA_iHrAyG2zXaZYXLq4S4P4613k42DiXGYOz7wz74vQOcFt4qsDGtqEckYOUJNEnISYRunhfmajBjpxbooxoVlCjlGDJozFFLMmavfUwsxWylj7Xn5LHRR1NSkDp80ycKbUgZI2N1WgVkqX1eQUHRVSOzjb9hZ6ve0Nu3fh4Ll_370ZhCrKKAllTMYFz2nOIJNxkmAOEI8hhUjKrPCngRGg44hKxVnOixxHHCdRQSklXBUZa6Grje7cms8a3ELMSqdAa1mBqZ0gKWZJxrj30UKXf9CpqW3lv1tTNEvjjBBPXW8oZY1zFgoxt-VM2pUgWKxDFD5E8RuiZy-2inU-g_Ge3KXmgc4GWJYaVv8rid6gt5MMNxulW8DXfkPaD-E9JLF4e-oL3H1IX_DwUYzYD0ufiHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802985911</pqid></control><display><type>article</type><title>Ectomycorrhizal fungi slow soil carbon cycling</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Averill, Colin ; Hawkes, Christine V.</creator><contributor>Bardgett, Richard</contributor><creatorcontrib>Averill, Colin ; Hawkes, Christine V. ; Bardgett, Richard</creatorcontrib><description>Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free‐living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate.</description><identifier>ISSN: 1461-023X</identifier><identifier>EISSN: 1461-0248</identifier><identifier>DOI: 10.1111/ele.12631</identifier><identifier>PMID: 27335203</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Biogeochemistry ; Biomass ; Carbon ; Carbon - chemistry ; Carbon Cycle - physiology ; Climate change ; Competition ; ecosystem ecology ; Ecosystems ; Enzymes - metabolism ; Forests ; Fungi - metabolism ; Greenhouse gases ; Mycorrhizae ; mycorrhizal fungi ; Nitrogen ; Soil - chemistry ; soil carbon ; soil ecology ; soil nitrogen ; Soils ; Tsuga - microbiology</subject><ispartof>Ecology letters, 2016-08, Vol.19 (8), p.937-947</ispartof><rights>2016 John Wiley &amp; Sons Ltd/CNRS</rights><rights>2016 John Wiley &amp; Sons Ltd/CNRS.</rights><rights>Copyright © 2016 John Wiley &amp; Sons Ltd/CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4921-a51df6b2b3e9a57706ee5de8e4aa9f352e31e2d42ac63b6fb046074f22216cf93</citedby><cites>FETCH-LOGICAL-c4921-a51df6b2b3e9a57706ee5de8e4aa9f352e31e2d42ac63b6fb046074f22216cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fele.12631$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fele.12631$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27335203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bardgett, Richard</contributor><creatorcontrib>Averill, Colin</creatorcontrib><creatorcontrib>Hawkes, Christine V.</creatorcontrib><title>Ectomycorrhizal fungi slow soil carbon cycling</title><title>Ecology letters</title><addtitle>Ecol Lett</addtitle><description>Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free‐living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate.</description><subject>Biogeochemistry</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Carbon Cycle - physiology</subject><subject>Climate change</subject><subject>Competition</subject><subject>ecosystem ecology</subject><subject>Ecosystems</subject><subject>Enzymes - metabolism</subject><subject>Forests</subject><subject>Fungi - metabolism</subject><subject>Greenhouse gases</subject><subject>Mycorrhizae</subject><subject>mycorrhizal fungi</subject><subject>Nitrogen</subject><subject>Soil - chemistry</subject><subject>soil carbon</subject><subject>soil ecology</subject><subject>soil nitrogen</subject><subject>Soils</subject><subject>Tsuga - microbiology</subject><issn>1461-023X</issn><issn>1461-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1PwkAQhjdGI4ge_AOmiRc9FPaj3bZHQxA_iHrAyG2zXaZYXLq4S4P4613k42DiXGYOz7wz74vQOcFt4qsDGtqEckYOUJNEnISYRunhfmajBjpxbooxoVlCjlGDJozFFLMmavfUwsxWylj7Xn5LHRR1NSkDp80ycKbUgZI2N1WgVkqX1eQUHRVSOzjb9hZ6ve0Nu3fh4Ll_370ZhCrKKAllTMYFz2nOIJNxkmAOEI8hhUjKrPCngRGg44hKxVnOixxHHCdRQSklXBUZa6Grje7cms8a3ELMSqdAa1mBqZ0gKWZJxrj30UKXf9CpqW3lv1tTNEvjjBBPXW8oZY1zFgoxt-VM2pUgWKxDFD5E8RuiZy-2inU-g_Ge3KXmgc4GWJYaVv8rid6gt5MMNxulW8DXfkPaD-E9JLF4e-oL3H1IX_DwUYzYD0ufiHo</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Averill, Colin</creator><creator>Hawkes, Christine V.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Ectomycorrhizal fungi slow soil carbon cycling</title><author>Averill, Colin ; Hawkes, Christine V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4921-a51df6b2b3e9a57706ee5de8e4aa9f352e31e2d42ac63b6fb046074f22216cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biogeochemistry</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Carbon Cycle - physiology</topic><topic>Climate change</topic><topic>Competition</topic><topic>ecosystem ecology</topic><topic>Ecosystems</topic><topic>Enzymes - metabolism</topic><topic>Forests</topic><topic>Fungi - metabolism</topic><topic>Greenhouse gases</topic><topic>Mycorrhizae</topic><topic>mycorrhizal fungi</topic><topic>Nitrogen</topic><topic>Soil - chemistry</topic><topic>soil carbon</topic><topic>soil ecology</topic><topic>soil nitrogen</topic><topic>Soils</topic><topic>Tsuga - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averill, Colin</creatorcontrib><creatorcontrib>Hawkes, Christine V.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averill, Colin</au><au>Hawkes, Christine V.</au><au>Bardgett, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ectomycorrhizal fungi slow soil carbon cycling</atitle><jtitle>Ecology letters</jtitle><addtitle>Ecol Lett</addtitle><date>2016-08</date><risdate>2016</risdate><volume>19</volume><issue>8</issue><spage>937</spage><epage>947</epage><pages>937-947</pages><issn>1461-023X</issn><eissn>1461-0248</eissn><abstract>Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free‐living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27335203</pmid><doi>10.1111/ele.12631</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1461-023X
ispartof Ecology letters, 2016-08, Vol.19 (8), p.937-947
issn 1461-023X
1461-0248
language eng
recordid cdi_proquest_miscellaneous_1803793673
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biogeochemistry
Biomass
Carbon
Carbon - chemistry
Carbon Cycle - physiology
Climate change
Competition
ecosystem ecology
Ecosystems
Enzymes - metabolism
Forests
Fungi - metabolism
Greenhouse gases
Mycorrhizae
mycorrhizal fungi
Nitrogen
Soil - chemistry
soil carbon
soil ecology
soil nitrogen
Soils
Tsuga - microbiology
title Ectomycorrhizal fungi slow soil carbon cycling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ectomycorrhizal%20fungi%20slow%20soil%20carbon%20cycling&rft.jtitle=Ecology%20letters&rft.au=Averill,%20Colin&rft.date=2016-08&rft.volume=19&rft.issue=8&rft.spage=937&rft.epage=947&rft.pages=937-947&rft.issn=1461-023X&rft.eissn=1461-0248&rft_id=info:doi/10.1111/ele.12631&rft_dat=%3Cproquest_cross%3E4113589141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1802985911&rft_id=info:pmid/27335203&rfr_iscdi=true