Greater soil C inputs accelerate loss of C in cropping systems with low N input

BACKGROUND AND AIMS: Managing soil organic matter (SOM) levels in agricultural systems has focused predominantly on the quantity of plant residues returned to the soil but residue quality may also affect SOM stores and dynamics. Our objective in this research was to evaluate the influence of crop ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and soil 2016-03, Vol.400 (1-2), p.93-105
Hauptverfasser: Diochon, A, Gregorich, E. G, Kellman, L, Morrison, M, Ma, B.-L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 1-2
container_start_page 93
container_title Plant and soil
container_volume 400
creator Diochon, A
Gregorich, E. G
Kellman, L
Morrison, M
Ma, B.-L
description BACKGROUND AND AIMS: Managing soil organic matter (SOM) levels in agricultural systems has focused predominantly on the quantity of plant residues returned to the soil but residue quality may also affect SOM stores and dynamics. Our objective in this research was to evaluate the influence of crop rotation on SOM storage and dynamics in a long-term field experiment using particle size fractionation and natural abundance ¹³C. METHODS: Soils were collected from an 18-year maize (Zea mays L.) and soybean (Glycine max (L) Merr.) cropping experiment that imposed a natural shift in the C isotope ratio of SOM with no addition of fertilizer nitrogen (N). We fractionated soils from time zero and year 18 into three size fractions (>53 μm, 5–53 μm,
doi_str_mv 10.1007/s11104-015-2718-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803166826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A444525092</galeid><jstor_id>43872572</jstor_id><sourcerecordid>A444525092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-5f4ee3b71b96b39e6c85f2968b7995d15af9eff7b48291fe09e7e7c6c2ada9d43</originalsourceid><addsrcrecordid>eNqFkk9rFTEUxQdR8Fn9AC7EgBs3U3OTyb9ledRaKHahBXchk3fzzGPeZEzmUfrtzTgixYWSRUjO7-Te5KRpXgM9B0rVhwIAtGspiJYp0K1-0mxAKN4KyuXTZkMpZy1V5tvz5kUpB7qsQW6a26uMbsZMSooD2ZI4Tqe5EOc9DpirQoZUCknhl0Z8TtMUxz0pD2XGYyH3cf5ekXvyebW-bJ4FNxR89Xs-a-4-Xn7dfmpvbq-utxc3rRdcza0IHSLvFfRG9tyg9FoEZqTulTFiB8IFgyGovtPMQEBqUKHy0jO3c2bX8bPm_XrulNOPE5bZHmOpPQ9uxHQqFjTlIKVm8v-oUlLKjlKo6Lu_0EM65bFeZKGAGa20rtT5Su3dgDaOIc3Z-Tp2eIw-jRhi3b_ouk4wQQ2rBlgN9flKyRjslOPR5QcL1C7x2TU-W-OzS3x2KcJWT6nsuMf8qJV_mN6spkOZU_5TpeNaMaGWRt6uenDJun2Oxd59YRRk_Q8GjDT8J_D7rfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771298788</pqid></control><display><type>article</type><title>Greater soil C inputs accelerate loss of C in cropping systems with low N input</title><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Diochon, A ; Gregorich, E. G ; Kellman, L ; Morrison, M ; Ma, B.-L</creator><creatorcontrib>Diochon, A ; Gregorich, E. G ; Kellman, L ; Morrison, M ; Ma, B.-L</creatorcontrib><description>BACKGROUND AND AIMS: Managing soil organic matter (SOM) levels in agricultural systems has focused predominantly on the quantity of plant residues returned to the soil but residue quality may also affect SOM stores and dynamics. Our objective in this research was to evaluate the influence of crop rotation on SOM storage and dynamics in a long-term field experiment using particle size fractionation and natural abundance ¹³C. METHODS: Soils were collected from an 18-year maize (Zea mays L.) and soybean (Glycine max (L) Merr.) cropping experiment that imposed a natural shift in the C isotope ratio of SOM with no addition of fertilizer nitrogen (N). We fractionated soils from time zero and year 18 into three size fractions (&gt;53 μm, 5–53 μm, &lt;5 μm), analyzed the whole soils and fractions for their elemental concentrations and C isotope ratios, and calculated the storage and turnover of C and N in the soil. RESULTS: Soil C and N levels declined in all cropping treatments over time. The quantity and quality of residues returned to the soil over the experimental period differed among the rotation treatments but there was no rotation effect on the storage of C and N in the whole soil or any fraction. The rate of soil C and N loss was positively related to the quantity of residues returned to the soil, suggesting that in this C- and N-limited system, residue addition stimulated decomposition of recalcitrant C. CONCLUSIONS: This study indicates that C inputs alone may not be sufficient for increasing SOC stores and that the availability of nutrients in the plant-soil system must also be considered, particularly when N inputs are limiting. Our results suggest that in a C- and N-limited system, additions of fresh residues may stimulate the microbial community to mine recalcitrant stores of SOM for N, thereby resulting in losses of otherwise stable SOM stores by priming.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-015-2718-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Agricultural practices ; Agricultural soils ; Agrology ; Biomedical and Life Sciences ; Carbon ; Carbon content ; carbon sequestration ; Corn ; Crop rotation ; Cropping systems ; Crops ; Ecology ; Environmental aspects ; Farming systems ; field experimentation ; Fractionation ; Glycine max ; Life Sciences ; microbial communities ; Nitrogen content ; nitrogen fertilizers ; Nutrient availability ; nutrients ; Organic matter ; Organic soils ; Particle size ; Plant Physiology ; plant residues ; Plant Sciences ; Regular Article ; Residues ; soil ; Soil depth ; Soil fertility ; Soil management ; Soil microorganisms ; Soil organic carbon ; Soil organic matter ; Soil Science &amp; Conservation ; Soil water ; Soils ; Soybeans ; stable isotopes ; Tillage ; Zea mays</subject><ispartof>Plant and soil, 2016-03, Vol.400 (1-2), p.93-105</ispartof><rights>Springer Science+Business Media 2016</rights><rights>Springer International Publishing Switzerland 2015</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Springer International Publishing Switzerland 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-5f4ee3b71b96b39e6c85f2968b7995d15af9eff7b48291fe09e7e7c6c2ada9d43</citedby><cites>FETCH-LOGICAL-c537t-5f4ee3b71b96b39e6c85f2968b7995d15af9eff7b48291fe09e7e7c6c2ada9d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43872572$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43872572$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids></links><search><creatorcontrib>Diochon, A</creatorcontrib><creatorcontrib>Gregorich, E. G</creatorcontrib><creatorcontrib>Kellman, L</creatorcontrib><creatorcontrib>Morrison, M</creatorcontrib><creatorcontrib>Ma, B.-L</creatorcontrib><title>Greater soil C inputs accelerate loss of C in cropping systems with low N input</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>BACKGROUND AND AIMS: Managing soil organic matter (SOM) levels in agricultural systems has focused predominantly on the quantity of plant residues returned to the soil but residue quality may also affect SOM stores and dynamics. Our objective in this research was to evaluate the influence of crop rotation on SOM storage and dynamics in a long-term field experiment using particle size fractionation and natural abundance ¹³C. METHODS: Soils were collected from an 18-year maize (Zea mays L.) and soybean (Glycine max (L) Merr.) cropping experiment that imposed a natural shift in the C isotope ratio of SOM with no addition of fertilizer nitrogen (N). We fractionated soils from time zero and year 18 into three size fractions (&gt;53 μm, 5–53 μm, &lt;5 μm), analyzed the whole soils and fractions for their elemental concentrations and C isotope ratios, and calculated the storage and turnover of C and N in the soil. RESULTS: Soil C and N levels declined in all cropping treatments over time. The quantity and quality of residues returned to the soil over the experimental period differed among the rotation treatments but there was no rotation effect on the storage of C and N in the whole soil or any fraction. The rate of soil C and N loss was positively related to the quantity of residues returned to the soil, suggesting that in this C- and N-limited system, residue addition stimulated decomposition of recalcitrant C. CONCLUSIONS: This study indicates that C inputs alone may not be sufficient for increasing SOC stores and that the availability of nutrients in the plant-soil system must also be considered, particularly when N inputs are limiting. Our results suggest that in a C- and N-limited system, additions of fresh residues may stimulate the microbial community to mine recalcitrant stores of SOM for N, thereby resulting in losses of otherwise stable SOM stores by priming.</description><subject>Agricultural practices</subject><subject>Agricultural soils</subject><subject>Agrology</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>carbon sequestration</subject><subject>Corn</subject><subject>Crop rotation</subject><subject>Cropping systems</subject><subject>Crops</subject><subject>Ecology</subject><subject>Environmental aspects</subject><subject>Farming systems</subject><subject>field experimentation</subject><subject>Fractionation</subject><subject>Glycine max</subject><subject>Life Sciences</subject><subject>microbial communities</subject><subject>Nitrogen content</subject><subject>nitrogen fertilizers</subject><subject>Nutrient availability</subject><subject>nutrients</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Particle size</subject><subject>Plant Physiology</subject><subject>plant residues</subject><subject>Plant Sciences</subject><subject>Regular Article</subject><subject>Residues</subject><subject>soil</subject><subject>Soil depth</subject><subject>Soil fertility</subject><subject>Soil management</subject><subject>Soil microorganisms</subject><subject>Soil organic carbon</subject><subject>Soil organic matter</subject><subject>Soil Science &amp; Conservation</subject><subject>Soil water</subject><subject>Soils</subject><subject>Soybeans</subject><subject>stable isotopes</subject><subject>Tillage</subject><subject>Zea mays</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkk9rFTEUxQdR8Fn9AC7EgBs3U3OTyb9ledRaKHahBXchk3fzzGPeZEzmUfrtzTgixYWSRUjO7-Te5KRpXgM9B0rVhwIAtGspiJYp0K1-0mxAKN4KyuXTZkMpZy1V5tvz5kUpB7qsQW6a26uMbsZMSooD2ZI4Tqe5EOc9DpirQoZUCknhl0Z8TtMUxz0pD2XGYyH3cf5ekXvyebW-bJ4FNxR89Xs-a-4-Xn7dfmpvbq-utxc3rRdcza0IHSLvFfRG9tyg9FoEZqTulTFiB8IFgyGovtPMQEBqUKHy0jO3c2bX8bPm_XrulNOPE5bZHmOpPQ9uxHQqFjTlIKVm8v-oUlLKjlKo6Lu_0EM65bFeZKGAGa20rtT5Su3dgDaOIc3Z-Tp2eIw-jRhi3b_ouk4wQQ2rBlgN9flKyRjslOPR5QcL1C7x2TU-W-OzS3x2KcJWT6nsuMf8qJV_mN6spkOZU_5TpeNaMaGWRt6uenDJun2Oxd59YRRk_Q8GjDT8J_D7rfo</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Diochon, A</creator><creator>Gregorich, E. G</creator><creator>Kellman, L</creator><creator>Morrison, M</creator><creator>Ma, B.-L</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7U6</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20160301</creationdate><title>Greater soil C inputs accelerate loss of C in cropping systems with low N input</title><author>Diochon, A ; Gregorich, E. G ; Kellman, L ; Morrison, M ; Ma, B.-L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-5f4ee3b71b96b39e6c85f2968b7995d15af9eff7b48291fe09e7e7c6c2ada9d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agricultural practices</topic><topic>Agricultural soils</topic><topic>Agrology</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>carbon sequestration</topic><topic>Corn</topic><topic>Crop rotation</topic><topic>Cropping systems</topic><topic>Crops</topic><topic>Ecology</topic><topic>Environmental aspects</topic><topic>Farming systems</topic><topic>field experimentation</topic><topic>Fractionation</topic><topic>Glycine max</topic><topic>Life Sciences</topic><topic>microbial communities</topic><topic>Nitrogen content</topic><topic>nitrogen fertilizers</topic><topic>Nutrient availability</topic><topic>nutrients</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Particle size</topic><topic>Plant Physiology</topic><topic>plant residues</topic><topic>Plant Sciences</topic><topic>Regular Article</topic><topic>Residues</topic><topic>soil</topic><topic>Soil depth</topic><topic>Soil fertility</topic><topic>Soil management</topic><topic>Soil microorganisms</topic><topic>Soil organic carbon</topic><topic>Soil organic matter</topic><topic>Soil Science &amp; Conservation</topic><topic>Soil water</topic><topic>Soils</topic><topic>Soybeans</topic><topic>stable isotopes</topic><topic>Tillage</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diochon, A</creatorcontrib><creatorcontrib>Gregorich, E. G</creatorcontrib><creatorcontrib>Kellman, L</creatorcontrib><creatorcontrib>Morrison, M</creatorcontrib><creatorcontrib>Ma, B.-L</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diochon, A</au><au>Gregorich, E. G</au><au>Kellman, L</au><au>Morrison, M</au><au>Ma, B.-L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greater soil C inputs accelerate loss of C in cropping systems with low N input</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>400</volume><issue>1-2</issue><spage>93</spage><epage>105</epage><pages>93-105</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><abstract>BACKGROUND AND AIMS: Managing soil organic matter (SOM) levels in agricultural systems has focused predominantly on the quantity of plant residues returned to the soil but residue quality may also affect SOM stores and dynamics. Our objective in this research was to evaluate the influence of crop rotation on SOM storage and dynamics in a long-term field experiment using particle size fractionation and natural abundance ¹³C. METHODS: Soils were collected from an 18-year maize (Zea mays L.) and soybean (Glycine max (L) Merr.) cropping experiment that imposed a natural shift in the C isotope ratio of SOM with no addition of fertilizer nitrogen (N). We fractionated soils from time zero and year 18 into three size fractions (&gt;53 μm, 5–53 μm, &lt;5 μm), analyzed the whole soils and fractions for their elemental concentrations and C isotope ratios, and calculated the storage and turnover of C and N in the soil. RESULTS: Soil C and N levels declined in all cropping treatments over time. The quantity and quality of residues returned to the soil over the experimental period differed among the rotation treatments but there was no rotation effect on the storage of C and N in the whole soil or any fraction. The rate of soil C and N loss was positively related to the quantity of residues returned to the soil, suggesting that in this C- and N-limited system, residue addition stimulated decomposition of recalcitrant C. CONCLUSIONS: This study indicates that C inputs alone may not be sufficient for increasing SOC stores and that the availability of nutrients in the plant-soil system must also be considered, particularly when N inputs are limiting. Our results suggest that in a C- and N-limited system, additions of fresh residues may stimulate the microbial community to mine recalcitrant stores of SOM for N, thereby resulting in losses of otherwise stable SOM stores by priming.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11104-015-2718-8</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-079X
ispartof Plant and soil, 2016-03, Vol.400 (1-2), p.93-105
issn 0032-079X
1573-5036
language eng
recordid cdi_proquest_miscellaneous_1803166826
source JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Agricultural practices
Agricultural soils
Agrology
Biomedical and Life Sciences
Carbon
Carbon content
carbon sequestration
Corn
Crop rotation
Cropping systems
Crops
Ecology
Environmental aspects
Farming systems
field experimentation
Fractionation
Glycine max
Life Sciences
microbial communities
Nitrogen content
nitrogen fertilizers
Nutrient availability
nutrients
Organic matter
Organic soils
Particle size
Plant Physiology
plant residues
Plant Sciences
Regular Article
Residues
soil
Soil depth
Soil fertility
Soil management
Soil microorganisms
Soil organic carbon
Soil organic matter
Soil Science & Conservation
Soil water
Soils
Soybeans
stable isotopes
Tillage
Zea mays
title Greater soil C inputs accelerate loss of C in cropping systems with low N input
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A05%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greater%20soil%20C%20inputs%20accelerate%20loss%20of%20C%20in%20cropping%20systems%20with%20low%20N%20input&rft.jtitle=Plant%20and%20soil&rft.au=Diochon,%20A&rft.date=2016-03-01&rft.volume=400&rft.issue=1-2&rft.spage=93&rft.epage=105&rft.pages=93-105&rft.issn=0032-079X&rft.eissn=1573-5036&rft_id=info:doi/10.1007/s11104-015-2718-8&rft_dat=%3Cgale_proqu%3EA444525092%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771298788&rft_id=info:pmid/&rft_galeid=A444525092&rft_jstor_id=43872572&rfr_iscdi=true