Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum

The cholesterol-lowering blockbuster drug pravastatin can be produced by stereoselective hydroxylation of the natural product compactin. We report here the metabolic reprogramming of the antibiotics producer Penicillium chrysogenum toward an industrial pravastatin production process. Following the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-03, Vol.112 (9), p.2847-2852
Hauptverfasser: McLean, Kirsty J, Hans, Marcus, Meijrink, Ben, van Scheppingen, Wibo B, Vollebregt, Aad, Tee, Kang Lan, van der Laan, Jan-Metske, Leys, David, Munro, Andrew W, van den Berg, Marco A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2852
container_issue 9
container_start_page 2847
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator McLean, Kirsty J
Hans, Marcus
Meijrink, Ben
van Scheppingen, Wibo B
Vollebregt, Aad
Tee, Kang Lan
van der Laan, Jan-Metske
Leys, David
Munro, Andrew W
van den Berg, Marco A
description The cholesterol-lowering blockbuster drug pravastatin can be produced by stereoselective hydroxylation of the natural product compactin. We report here the metabolic reprogramming of the antibiotics producer Penicillium chrysogenum toward an industrial pravastatin production process. Following the successful introduction of the compactin pathway into the β-lactam–negative P. chrysogenum DS50662, a new cytochrome P450 (P450 or CYP) from Amycolatopsis orientalis (CYP105AS1) was isolated to catalyze the final compactin hydroxylation step. Structural and biochemical characterization of the WT CYP105AS1 reveals that this CYP is an efficient compactin hydroxylase, but that predominant compactin binding modes lead mainly to the ineffective epimer 6- epi -pravastatin. To avoid costly fractionation of the epimer, the enzyme was evolved to invert stereoselectivity, producing the pharmacologically active pravastatin form. Crystal structures of the optimized mutant P450 Pᵣₐᵥₐ bound to compactin demonstrate how the selected combination of mutations enhance compactin binding and enable positioning of the substrate for stereo-specific oxidation. Expression of P450 Pᵣₐᵥₐ fused to a redox partner in compactin-producing P. chrysogenum yielded more than 6 g/L pravastatin at a pilot production scale, providing an effective new route to industrial scale production of an important drug. Significance Statins are successful widely used drugs that decrease the risk of coronary heart disease and strokes by lowering cholesterol levels. They selectively inhibit the key regulatory enzyme of the cholesterol synthesis pathway, thus lowering levels of plasma LDL (bad) cholesterol. Pravastatin is one of the leading and most effective statins, derived from the natural product compactin. However, pravastatin production involves a costly dual-step fermentation and biotransformation process. Here we present a single-step fermentative method for production of the active drug pravastatin. Reprogramming of the antibiotics-producing fungus Penicillium chrysogenum , with discovery and engineering of an enzyme involved in the hydroxylation of compactin, enables high level fermentation of the correct form of pravastatin to facilitate efficient industrial-scale statin drug production.
doi_str_mv 10.1073/pnas.1419028112
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803135326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803135326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-70e6bf301fc8cfbbd09ad0bd34747aa3712cb0f007fdfbf4fd9b65d336b732663</originalsourceid><addsrcrecordid>eNqN0j1v1TAUBmALgeilMLNBJBaWtMcfseMFqaooIFUCqXS2nMTOdZXYwU4u6sB_r8Mtl8ICkwc_72v56CD0EsMJBkFPJ6_TCWZYAqkxJo_QBoPEJWcSHqMNABFlzQg7Qs9SugEAWdXwFB2RikssqNigH1fO94Mp02ymwpo4Gj_r2e1MMcXQLe3sgi-CLeatKdptGEyGMQzlEL6bmKNFF5c-W73TaQ36Yud0EU1O91GP40py_IvxrnXD4JYx18TbFHrjl_E5emL1kMyL-_MYXV-8_3r-sbz8_OHT-dll2VaUzaUAwxtLAdu2bm3TdCB1B01HmWBCayowaRuwAMJ2trHMdrLhVUcpbwQlnNNj9G7fOy3NaLo2fzLqQU3RjTreqqCd-vPGu63qw04xWpGargVv7wti-LbkIajRpdYMg_YmLEnhGiimVX7s35RLJgUW7H8oB0lEJUWmb_6iN2GJPg9tVVgQJn6q071qY0gpGnv4Iga1LoxaF0b9XpicePVwMgf_a0MegDV5qMNESUVqtoLXe2B1ULqPLqnrKwKYA2BWCSLoHSRd01w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661724797</pqid></control><display><type>article</type><title>Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>McLean, Kirsty J ; Hans, Marcus ; Meijrink, Ben ; van Scheppingen, Wibo B ; Vollebregt, Aad ; Tee, Kang Lan ; van der Laan, Jan-Metske ; Leys, David ; Munro, Andrew W ; van den Berg, Marco A</creator><creatorcontrib>McLean, Kirsty J ; Hans, Marcus ; Meijrink, Ben ; van Scheppingen, Wibo B ; Vollebregt, Aad ; Tee, Kang Lan ; van der Laan, Jan-Metske ; Leys, David ; Munro, Andrew W ; van den Berg, Marco A</creatorcontrib><description>The cholesterol-lowering blockbuster drug pravastatin can be produced by stereoselective hydroxylation of the natural product compactin. We report here the metabolic reprogramming of the antibiotics producer Penicillium chrysogenum toward an industrial pravastatin production process. Following the successful introduction of the compactin pathway into the β-lactam–negative P. chrysogenum DS50662, a new cytochrome P450 (P450 or CYP) from Amycolatopsis orientalis (CYP105AS1) was isolated to catalyze the final compactin hydroxylation step. Structural and biochemical characterization of the WT CYP105AS1 reveals that this CYP is an efficient compactin hydroxylase, but that predominant compactin binding modes lead mainly to the ineffective epimer 6- epi -pravastatin. To avoid costly fractionation of the epimer, the enzyme was evolved to invert stereoselectivity, producing the pharmacologically active pravastatin form. Crystal structures of the optimized mutant P450 Pᵣₐᵥₐ bound to compactin demonstrate how the selected combination of mutations enhance compactin binding and enable positioning of the substrate for stereo-specific oxidation. Expression of P450 Pᵣₐᵥₐ fused to a redox partner in compactin-producing P. chrysogenum yielded more than 6 g/L pravastatin at a pilot production scale, providing an effective new route to industrial scale production of an important drug. Significance Statins are successful widely used drugs that decrease the risk of coronary heart disease and strokes by lowering cholesterol levels. They selectively inhibit the key regulatory enzyme of the cholesterol synthesis pathway, thus lowering levels of plasma LDL (bad) cholesterol. Pravastatin is one of the leading and most effective statins, derived from the natural product compactin. However, pravastatin production involves a costly dual-step fermentation and biotransformation process. Here we present a single-step fermentative method for production of the active drug pravastatin. Reprogramming of the antibiotics-producing fungus Penicillium chrysogenum , with discovery and engineering of an enzyme involved in the hydroxylation of compactin, enables high level fermentation of the correct form of pravastatin to facilitate efficient industrial-scale statin drug production.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1419028112</identifier><identifier>PMID: 25691737</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amycolatopsis orientalis ; Antibiotics ; anticholesteremic agents ; Bacteria ; Base Sequence ; Biological Sciences ; biotransformation ; Cholesterol ; coronary disease ; Crystal structure ; Crystallography, X-Ray ; Cytochrome P-450 Enzyme System - chemistry ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; engineering ; Fermentation ; Fractionation ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; fungi ; hydroxylation ; low density lipoprotein ; Molecular Sequence Data ; Mutation ; Penicillium chrysogenum ; Penicillium chrysogenum - enzymology ; Penicillium chrysogenum - genetics ; Physical Sciences ; Pravastatin - biosynthesis ; risk ; Stereoisomerism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (9), p.2847-2852</ispartof><rights>Copyright National Academy of Sciences Mar 3, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-70e6bf301fc8cfbbd09ad0bd34747aa3712cb0f007fdfbf4fd9b65d336b732663</citedby><cites>FETCH-LOGICAL-c534t-70e6bf301fc8cfbbd09ad0bd34747aa3712cb0f007fdfbf4fd9b65d336b732663</cites><orcidid>0000-0002-7193-5044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352836/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352836/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25691737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McLean, Kirsty J</creatorcontrib><creatorcontrib>Hans, Marcus</creatorcontrib><creatorcontrib>Meijrink, Ben</creatorcontrib><creatorcontrib>van Scheppingen, Wibo B</creatorcontrib><creatorcontrib>Vollebregt, Aad</creatorcontrib><creatorcontrib>Tee, Kang Lan</creatorcontrib><creatorcontrib>van der Laan, Jan-Metske</creatorcontrib><creatorcontrib>Leys, David</creatorcontrib><creatorcontrib>Munro, Andrew W</creatorcontrib><creatorcontrib>van den Berg, Marco A</creatorcontrib><title>Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The cholesterol-lowering blockbuster drug pravastatin can be produced by stereoselective hydroxylation of the natural product compactin. We report here the metabolic reprogramming of the antibiotics producer Penicillium chrysogenum toward an industrial pravastatin production process. Following the successful introduction of the compactin pathway into the β-lactam–negative P. chrysogenum DS50662, a new cytochrome P450 (P450 or CYP) from Amycolatopsis orientalis (CYP105AS1) was isolated to catalyze the final compactin hydroxylation step. Structural and biochemical characterization of the WT CYP105AS1 reveals that this CYP is an efficient compactin hydroxylase, but that predominant compactin binding modes lead mainly to the ineffective epimer 6- epi -pravastatin. To avoid costly fractionation of the epimer, the enzyme was evolved to invert stereoselectivity, producing the pharmacologically active pravastatin form. Crystal structures of the optimized mutant P450 Pᵣₐᵥₐ bound to compactin demonstrate how the selected combination of mutations enhance compactin binding and enable positioning of the substrate for stereo-specific oxidation. Expression of P450 Pᵣₐᵥₐ fused to a redox partner in compactin-producing P. chrysogenum yielded more than 6 g/L pravastatin at a pilot production scale, providing an effective new route to industrial scale production of an important drug. Significance Statins are successful widely used drugs that decrease the risk of coronary heart disease and strokes by lowering cholesterol levels. They selectively inhibit the key regulatory enzyme of the cholesterol synthesis pathway, thus lowering levels of plasma LDL (bad) cholesterol. Pravastatin is one of the leading and most effective statins, derived from the natural product compactin. However, pravastatin production involves a costly dual-step fermentation and biotransformation process. Here we present a single-step fermentative method for production of the active drug pravastatin. Reprogramming of the antibiotics-producing fungus Penicillium chrysogenum , with discovery and engineering of an enzyme involved in the hydroxylation of compactin, enables high level fermentation of the correct form of pravastatin to facilitate efficient industrial-scale statin drug production.</description><subject>Amycolatopsis orientalis</subject><subject>Antibiotics</subject><subject>anticholesteremic agents</subject><subject>Bacteria</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>biotransformation</subject><subject>Cholesterol</subject><subject>coronary disease</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>engineering</subject><subject>Fermentation</subject><subject>Fractionation</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>fungi</subject><subject>hydroxylation</subject><subject>low density lipoprotein</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Penicillium chrysogenum</subject><subject>Penicillium chrysogenum - enzymology</subject><subject>Penicillium chrysogenum - genetics</subject><subject>Physical Sciences</subject><subject>Pravastatin - biosynthesis</subject><subject>risk</subject><subject>Stereoisomerism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0j1v1TAUBmALgeilMLNBJBaWtMcfseMFqaooIFUCqXS2nMTOdZXYwU4u6sB_r8Mtl8ICkwc_72v56CD0EsMJBkFPJ6_TCWZYAqkxJo_QBoPEJWcSHqMNABFlzQg7Qs9SugEAWdXwFB2RikssqNigH1fO94Mp02ymwpo4Gj_r2e1MMcXQLe3sgi-CLeatKdptGEyGMQzlEL6bmKNFF5c-W73TaQ36Yud0EU1O91GP40py_IvxrnXD4JYx18TbFHrjl_E5emL1kMyL-_MYXV-8_3r-sbz8_OHT-dll2VaUzaUAwxtLAdu2bm3TdCB1B01HmWBCayowaRuwAMJ2trHMdrLhVUcpbwQlnNNj9G7fOy3NaLo2fzLqQU3RjTreqqCd-vPGu63qw04xWpGargVv7wti-LbkIajRpdYMg_YmLEnhGiimVX7s35RLJgUW7H8oB0lEJUWmb_6iN2GJPg9tVVgQJn6q071qY0gpGnv4Iga1LoxaF0b9XpicePVwMgf_a0MegDV5qMNESUVqtoLXe2B1ULqPLqnrKwKYA2BWCSLoHSRd01w</recordid><startdate>20150303</startdate><enddate>20150303</enddate><creator>McLean, Kirsty J</creator><creator>Hans, Marcus</creator><creator>Meijrink, Ben</creator><creator>van Scheppingen, Wibo B</creator><creator>Vollebregt, Aad</creator><creator>Tee, Kang Lan</creator><creator>van der Laan, Jan-Metske</creator><creator>Leys, David</creator><creator>Munro, Andrew W</creator><creator>van den Berg, Marco A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7T7</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7193-5044</orcidid></search><sort><creationdate>20150303</creationdate><title>Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum</title><author>McLean, Kirsty J ; Hans, Marcus ; Meijrink, Ben ; van Scheppingen, Wibo B ; Vollebregt, Aad ; Tee, Kang Lan ; van der Laan, Jan-Metske ; Leys, David ; Munro, Andrew W ; van den Berg, Marco A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-70e6bf301fc8cfbbd09ad0bd34747aa3712cb0f007fdfbf4fd9b65d336b732663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amycolatopsis orientalis</topic><topic>Antibiotics</topic><topic>anticholesteremic agents</topic><topic>Bacteria</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>biotransformation</topic><topic>Cholesterol</topic><topic>coronary disease</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>engineering</topic><topic>Fermentation</topic><topic>Fractionation</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>fungi</topic><topic>hydroxylation</topic><topic>low density lipoprotein</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Penicillium chrysogenum</topic><topic>Penicillium chrysogenum - enzymology</topic><topic>Penicillium chrysogenum - genetics</topic><topic>Physical Sciences</topic><topic>Pravastatin - biosynthesis</topic><topic>risk</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLean, Kirsty J</creatorcontrib><creatorcontrib>Hans, Marcus</creatorcontrib><creatorcontrib>Meijrink, Ben</creatorcontrib><creatorcontrib>van Scheppingen, Wibo B</creatorcontrib><creatorcontrib>Vollebregt, Aad</creatorcontrib><creatorcontrib>Tee, Kang Lan</creatorcontrib><creatorcontrib>van der Laan, Jan-Metske</creatorcontrib><creatorcontrib>Leys, David</creatorcontrib><creatorcontrib>Munro, Andrew W</creatorcontrib><creatorcontrib>van den Berg, Marco A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLean, Kirsty J</au><au>Hans, Marcus</au><au>Meijrink, Ben</au><au>van Scheppingen, Wibo B</au><au>Vollebregt, Aad</au><au>Tee, Kang Lan</au><au>van der Laan, Jan-Metske</au><au>Leys, David</au><au>Munro, Andrew W</au><au>van den Berg, Marco A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-03-03</date><risdate>2015</risdate><volume>112</volume><issue>9</issue><spage>2847</spage><epage>2852</epage><pages>2847-2852</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The cholesterol-lowering blockbuster drug pravastatin can be produced by stereoselective hydroxylation of the natural product compactin. We report here the metabolic reprogramming of the antibiotics producer Penicillium chrysogenum toward an industrial pravastatin production process. Following the successful introduction of the compactin pathway into the β-lactam–negative P. chrysogenum DS50662, a new cytochrome P450 (P450 or CYP) from Amycolatopsis orientalis (CYP105AS1) was isolated to catalyze the final compactin hydroxylation step. Structural and biochemical characterization of the WT CYP105AS1 reveals that this CYP is an efficient compactin hydroxylase, but that predominant compactin binding modes lead mainly to the ineffective epimer 6- epi -pravastatin. To avoid costly fractionation of the epimer, the enzyme was evolved to invert stereoselectivity, producing the pharmacologically active pravastatin form. Crystal structures of the optimized mutant P450 Pᵣₐᵥₐ bound to compactin demonstrate how the selected combination of mutations enhance compactin binding and enable positioning of the substrate for stereo-specific oxidation. Expression of P450 Pᵣₐᵥₐ fused to a redox partner in compactin-producing P. chrysogenum yielded more than 6 g/L pravastatin at a pilot production scale, providing an effective new route to industrial scale production of an important drug. Significance Statins are successful widely used drugs that decrease the risk of coronary heart disease and strokes by lowering cholesterol levels. They selectively inhibit the key regulatory enzyme of the cholesterol synthesis pathway, thus lowering levels of plasma LDL (bad) cholesterol. Pravastatin is one of the leading and most effective statins, derived from the natural product compactin. However, pravastatin production involves a costly dual-step fermentation and biotransformation process. Here we present a single-step fermentative method for production of the active drug pravastatin. Reprogramming of the antibiotics-producing fungus Penicillium chrysogenum , with discovery and engineering of an enzyme involved in the hydroxylation of compactin, enables high level fermentation of the correct form of pravastatin to facilitate efficient industrial-scale statin drug production.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25691737</pmid><doi>10.1073/pnas.1419028112</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7193-5044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (9), p.2847-2852
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1803135326
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amycolatopsis orientalis
Antibiotics
anticholesteremic agents
Bacteria
Base Sequence
Biological Sciences
biotransformation
Cholesterol
coronary disease
Crystal structure
Crystallography, X-Ray
Cytochrome P-450 Enzyme System - chemistry
Cytochrome P-450 Enzyme System - genetics
Cytochrome P-450 Enzyme System - metabolism
engineering
Fermentation
Fractionation
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
fungi
hydroxylation
low density lipoprotein
Molecular Sequence Data
Mutation
Penicillium chrysogenum
Penicillium chrysogenum - enzymology
Penicillium chrysogenum - genetics
Physical Sciences
Pravastatin - biosynthesis
risk
Stereoisomerism
title Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-step%20fermentative%20production%20of%20the%20cholesterol-lowering%20drug%20pravastatin%20via%20reprogramming%20of%20Penicillium%20chrysogenum&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=McLean,%20Kirsty%20J&rft.date=2015-03-03&rft.volume=112&rft.issue=9&rft.spage=2847&rft.epage=2852&rft.pages=2847-2852&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1419028112&rft_dat=%3Cproquest_pubme%3E1803135326%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661724797&rft_id=info:pmid/25691737&rfr_iscdi=true