Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum
The cholesterol-lowering blockbuster drug pravastatin can be produced by stereoselective hydroxylation of the natural product compactin. We report here the metabolic reprogramming of the antibiotics producer Penicillium chrysogenum toward an industrial pravastatin production process. Following the s...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-03, Vol.112 (9), p.2847-2852 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2852 |
---|---|
container_issue | 9 |
container_start_page | 2847 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | McLean, Kirsty J Hans, Marcus Meijrink, Ben van Scheppingen, Wibo B Vollebregt, Aad Tee, Kang Lan van der Laan, Jan-Metske Leys, David Munro, Andrew W van den Berg, Marco A |
description | The cholesterol-lowering blockbuster drug pravastatin can be produced by stereoselective hydroxylation of the natural product compactin. We report here the metabolic reprogramming of the antibiotics producer Penicillium chrysogenum toward an industrial pravastatin production process. Following the successful introduction of the compactin pathway into the β-lactam–negative P. chrysogenum DS50662, a new cytochrome P450 (P450 or CYP) from Amycolatopsis orientalis (CYP105AS1) was isolated to catalyze the final compactin hydroxylation step. Structural and biochemical characterization of the WT CYP105AS1 reveals that this CYP is an efficient compactin hydroxylase, but that predominant compactin binding modes lead mainly to the ineffective epimer 6- epi -pravastatin. To avoid costly fractionation of the epimer, the enzyme was evolved to invert stereoselectivity, producing the pharmacologically active pravastatin form. Crystal structures of the optimized mutant P450 Pᵣₐᵥₐ bound to compactin demonstrate how the selected combination of mutations enhance compactin binding and enable positioning of the substrate for stereo-specific oxidation. Expression of P450 Pᵣₐᵥₐ fused to a redox partner in compactin-producing P. chrysogenum yielded more than 6 g/L pravastatin at a pilot production scale, providing an effective new route to industrial scale production of an important drug.
Significance Statins are successful widely used drugs that decrease the risk of coronary heart disease and strokes by lowering cholesterol levels. They selectively inhibit the key regulatory enzyme of the cholesterol synthesis pathway, thus lowering levels of plasma LDL (bad) cholesterol. Pravastatin is one of the leading and most effective statins, derived from the natural product compactin. However, pravastatin production involves a costly dual-step fermentation and biotransformation process. Here we present a single-step fermentative method for production of the active drug pravastatin. Reprogramming of the antibiotics-producing fungus Penicillium chrysogenum , with discovery and engineering of an enzyme involved in the hydroxylation of compactin, enables high level fermentation of the correct form of pravastatin to facilitate efficient industrial-scale statin drug production. |
doi_str_mv | 10.1073/pnas.1419028112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803135326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803135326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-70e6bf301fc8cfbbd09ad0bd34747aa3712cb0f007fdfbf4fd9b65d336b732663</originalsourceid><addsrcrecordid>eNqN0j1v1TAUBmALgeilMLNBJBaWtMcfseMFqaooIFUCqXS2nMTOdZXYwU4u6sB_r8Mtl8ICkwc_72v56CD0EsMJBkFPJ6_TCWZYAqkxJo_QBoPEJWcSHqMNABFlzQg7Qs9SugEAWdXwFB2RikssqNigH1fO94Mp02ymwpo4Gj_r2e1MMcXQLe3sgi-CLeatKdptGEyGMQzlEL6bmKNFF5c-W73TaQ36Yud0EU1O91GP40py_IvxrnXD4JYx18TbFHrjl_E5emL1kMyL-_MYXV-8_3r-sbz8_OHT-dll2VaUzaUAwxtLAdu2bm3TdCB1B01HmWBCayowaRuwAMJ2trHMdrLhVUcpbwQlnNNj9G7fOy3NaLo2fzLqQU3RjTreqqCd-vPGu63qw04xWpGargVv7wti-LbkIajRpdYMg_YmLEnhGiimVX7s35RLJgUW7H8oB0lEJUWmb_6iN2GJPg9tVVgQJn6q071qY0gpGnv4Iga1LoxaF0b9XpicePVwMgf_a0MegDV5qMNESUVqtoLXe2B1ULqPLqnrKwKYA2BWCSLoHSRd01w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661724797</pqid></control><display><type>article</type><title>Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>McLean, Kirsty J ; Hans, Marcus ; Meijrink, Ben ; van Scheppingen, Wibo B ; Vollebregt, Aad ; Tee, Kang Lan ; van der Laan, Jan-Metske ; Leys, David ; Munro, Andrew W ; van den Berg, Marco A</creator><creatorcontrib>McLean, Kirsty J ; Hans, Marcus ; Meijrink, Ben ; van Scheppingen, Wibo B ; Vollebregt, Aad ; Tee, Kang Lan ; van der Laan, Jan-Metske ; Leys, David ; Munro, Andrew W ; van den Berg, Marco A</creatorcontrib><description>The cholesterol-lowering blockbuster drug pravastatin can be produced by stereoselective hydroxylation of the natural product compactin. We report here the metabolic reprogramming of the antibiotics producer Penicillium chrysogenum toward an industrial pravastatin production process. Following the successful introduction of the compactin pathway into the β-lactam–negative P. chrysogenum DS50662, a new cytochrome P450 (P450 or CYP) from Amycolatopsis orientalis (CYP105AS1) was isolated to catalyze the final compactin hydroxylation step. Structural and biochemical characterization of the WT CYP105AS1 reveals that this CYP is an efficient compactin hydroxylase, but that predominant compactin binding modes lead mainly to the ineffective epimer 6- epi -pravastatin. To avoid costly fractionation of the epimer, the enzyme was evolved to invert stereoselectivity, producing the pharmacologically active pravastatin form. Crystal structures of the optimized mutant P450 Pᵣₐᵥₐ bound to compactin demonstrate how the selected combination of mutations enhance compactin binding and enable positioning of the substrate for stereo-specific oxidation. Expression of P450 Pᵣₐᵥₐ fused to a redox partner in compactin-producing P. chrysogenum yielded more than 6 g/L pravastatin at a pilot production scale, providing an effective new route to industrial scale production of an important drug.
Significance Statins are successful widely used drugs that decrease the risk of coronary heart disease and strokes by lowering cholesterol levels. They selectively inhibit the key regulatory enzyme of the cholesterol synthesis pathway, thus lowering levels of plasma LDL (bad) cholesterol. Pravastatin is one of the leading and most effective statins, derived from the natural product compactin. However, pravastatin production involves a costly dual-step fermentation and biotransformation process. Here we present a single-step fermentative method for production of the active drug pravastatin. Reprogramming of the antibiotics-producing fungus Penicillium chrysogenum , with discovery and engineering of an enzyme involved in the hydroxylation of compactin, enables high level fermentation of the correct form of pravastatin to facilitate efficient industrial-scale statin drug production.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1419028112</identifier><identifier>PMID: 25691737</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amycolatopsis orientalis ; Antibiotics ; anticholesteremic agents ; Bacteria ; Base Sequence ; Biological Sciences ; biotransformation ; Cholesterol ; coronary disease ; Crystal structure ; Crystallography, X-Ray ; Cytochrome P-450 Enzyme System - chemistry ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P-450 Enzyme System - metabolism ; engineering ; Fermentation ; Fractionation ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; fungi ; hydroxylation ; low density lipoprotein ; Molecular Sequence Data ; Mutation ; Penicillium chrysogenum ; Penicillium chrysogenum - enzymology ; Penicillium chrysogenum - genetics ; Physical Sciences ; Pravastatin - biosynthesis ; risk ; Stereoisomerism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (9), p.2847-2852</ispartof><rights>Copyright National Academy of Sciences Mar 3, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-70e6bf301fc8cfbbd09ad0bd34747aa3712cb0f007fdfbf4fd9b65d336b732663</citedby><cites>FETCH-LOGICAL-c534t-70e6bf301fc8cfbbd09ad0bd34747aa3712cb0f007fdfbf4fd9b65d336b732663</cites><orcidid>0000-0002-7193-5044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352836/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352836/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25691737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McLean, Kirsty J</creatorcontrib><creatorcontrib>Hans, Marcus</creatorcontrib><creatorcontrib>Meijrink, Ben</creatorcontrib><creatorcontrib>van Scheppingen, Wibo B</creatorcontrib><creatorcontrib>Vollebregt, Aad</creatorcontrib><creatorcontrib>Tee, Kang Lan</creatorcontrib><creatorcontrib>van der Laan, Jan-Metske</creatorcontrib><creatorcontrib>Leys, David</creatorcontrib><creatorcontrib>Munro, Andrew W</creatorcontrib><creatorcontrib>van den Berg, Marco A</creatorcontrib><title>Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The cholesterol-lowering blockbuster drug pravastatin can be produced by stereoselective hydroxylation of the natural product compactin. We report here the metabolic reprogramming of the antibiotics producer Penicillium chrysogenum toward an industrial pravastatin production process. Following the successful introduction of the compactin pathway into the β-lactam–negative P. chrysogenum DS50662, a new cytochrome P450 (P450 or CYP) from Amycolatopsis orientalis (CYP105AS1) was isolated to catalyze the final compactin hydroxylation step. Structural and biochemical characterization of the WT CYP105AS1 reveals that this CYP is an efficient compactin hydroxylase, but that predominant compactin binding modes lead mainly to the ineffective epimer 6- epi -pravastatin. To avoid costly fractionation of the epimer, the enzyme was evolved to invert stereoselectivity, producing the pharmacologically active pravastatin form. Crystal structures of the optimized mutant P450 Pᵣₐᵥₐ bound to compactin demonstrate how the selected combination of mutations enhance compactin binding and enable positioning of the substrate for stereo-specific oxidation. Expression of P450 Pᵣₐᵥₐ fused to a redox partner in compactin-producing P. chrysogenum yielded more than 6 g/L pravastatin at a pilot production scale, providing an effective new route to industrial scale production of an important drug.
Significance Statins are successful widely used drugs that decrease the risk of coronary heart disease and strokes by lowering cholesterol levels. They selectively inhibit the key regulatory enzyme of the cholesterol synthesis pathway, thus lowering levels of plasma LDL (bad) cholesterol. Pravastatin is one of the leading and most effective statins, derived from the natural product compactin. However, pravastatin production involves a costly dual-step fermentation and biotransformation process. Here we present a single-step fermentative method for production of the active drug pravastatin. Reprogramming of the antibiotics-producing fungus Penicillium chrysogenum , with discovery and engineering of an enzyme involved in the hydroxylation of compactin, enables high level fermentation of the correct form of pravastatin to facilitate efficient industrial-scale statin drug production.</description><subject>Amycolatopsis orientalis</subject><subject>Antibiotics</subject><subject>anticholesteremic agents</subject><subject>Bacteria</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>biotransformation</subject><subject>Cholesterol</subject><subject>coronary disease</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>engineering</subject><subject>Fermentation</subject><subject>Fractionation</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>fungi</subject><subject>hydroxylation</subject><subject>low density lipoprotein</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Penicillium chrysogenum</subject><subject>Penicillium chrysogenum - enzymology</subject><subject>Penicillium chrysogenum - genetics</subject><subject>Physical Sciences</subject><subject>Pravastatin - biosynthesis</subject><subject>risk</subject><subject>Stereoisomerism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0j1v1TAUBmALgeilMLNBJBaWtMcfseMFqaooIFUCqXS2nMTOdZXYwU4u6sB_r8Mtl8ICkwc_72v56CD0EsMJBkFPJ6_TCWZYAqkxJo_QBoPEJWcSHqMNABFlzQg7Qs9SugEAWdXwFB2RikssqNigH1fO94Mp02ymwpo4Gj_r2e1MMcXQLe3sgi-CLeatKdptGEyGMQzlEL6bmKNFF5c-W73TaQ36Yud0EU1O91GP40py_IvxrnXD4JYx18TbFHrjl_E5emL1kMyL-_MYXV-8_3r-sbz8_OHT-dll2VaUzaUAwxtLAdu2bm3TdCB1B01HmWBCayowaRuwAMJ2trHMdrLhVUcpbwQlnNNj9G7fOy3NaLo2fzLqQU3RjTreqqCd-vPGu63qw04xWpGargVv7wti-LbkIajRpdYMg_YmLEnhGiimVX7s35RLJgUW7H8oB0lEJUWmb_6iN2GJPg9tVVgQJn6q071qY0gpGnv4Iga1LoxaF0b9XpicePVwMgf_a0MegDV5qMNESUVqtoLXe2B1ULqPLqnrKwKYA2BWCSLoHSRd01w</recordid><startdate>20150303</startdate><enddate>20150303</enddate><creator>McLean, Kirsty J</creator><creator>Hans, Marcus</creator><creator>Meijrink, Ben</creator><creator>van Scheppingen, Wibo B</creator><creator>Vollebregt, Aad</creator><creator>Tee, Kang Lan</creator><creator>van der Laan, Jan-Metske</creator><creator>Leys, David</creator><creator>Munro, Andrew W</creator><creator>van den Berg, Marco A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7T7</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7193-5044</orcidid></search><sort><creationdate>20150303</creationdate><title>Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum</title><author>McLean, Kirsty J ; Hans, Marcus ; Meijrink, Ben ; van Scheppingen, Wibo B ; Vollebregt, Aad ; Tee, Kang Lan ; van der Laan, Jan-Metske ; Leys, David ; Munro, Andrew W ; van den Berg, Marco A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-70e6bf301fc8cfbbd09ad0bd34747aa3712cb0f007fdfbf4fd9b65d336b732663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amycolatopsis orientalis</topic><topic>Antibiotics</topic><topic>anticholesteremic agents</topic><topic>Bacteria</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>biotransformation</topic><topic>Cholesterol</topic><topic>coronary disease</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>engineering</topic><topic>Fermentation</topic><topic>Fractionation</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>fungi</topic><topic>hydroxylation</topic><topic>low density lipoprotein</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Penicillium chrysogenum</topic><topic>Penicillium chrysogenum - enzymology</topic><topic>Penicillium chrysogenum - genetics</topic><topic>Physical Sciences</topic><topic>Pravastatin - biosynthesis</topic><topic>risk</topic><topic>Stereoisomerism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLean, Kirsty J</creatorcontrib><creatorcontrib>Hans, Marcus</creatorcontrib><creatorcontrib>Meijrink, Ben</creatorcontrib><creatorcontrib>van Scheppingen, Wibo B</creatorcontrib><creatorcontrib>Vollebregt, Aad</creatorcontrib><creatorcontrib>Tee, Kang Lan</creatorcontrib><creatorcontrib>van der Laan, Jan-Metske</creatorcontrib><creatorcontrib>Leys, David</creatorcontrib><creatorcontrib>Munro, Andrew W</creatorcontrib><creatorcontrib>van den Berg, Marco A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLean, Kirsty J</au><au>Hans, Marcus</au><au>Meijrink, Ben</au><au>van Scheppingen, Wibo B</au><au>Vollebregt, Aad</au><au>Tee, Kang Lan</au><au>van der Laan, Jan-Metske</au><au>Leys, David</au><au>Munro, Andrew W</au><au>van den Berg, Marco A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-03-03</date><risdate>2015</risdate><volume>112</volume><issue>9</issue><spage>2847</spage><epage>2852</epage><pages>2847-2852</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The cholesterol-lowering blockbuster drug pravastatin can be produced by stereoselective hydroxylation of the natural product compactin. We report here the metabolic reprogramming of the antibiotics producer Penicillium chrysogenum toward an industrial pravastatin production process. Following the successful introduction of the compactin pathway into the β-lactam–negative P. chrysogenum DS50662, a new cytochrome P450 (P450 or CYP) from Amycolatopsis orientalis (CYP105AS1) was isolated to catalyze the final compactin hydroxylation step. Structural and biochemical characterization of the WT CYP105AS1 reveals that this CYP is an efficient compactin hydroxylase, but that predominant compactin binding modes lead mainly to the ineffective epimer 6- epi -pravastatin. To avoid costly fractionation of the epimer, the enzyme was evolved to invert stereoselectivity, producing the pharmacologically active pravastatin form. Crystal structures of the optimized mutant P450 Pᵣₐᵥₐ bound to compactin demonstrate how the selected combination of mutations enhance compactin binding and enable positioning of the substrate for stereo-specific oxidation. Expression of P450 Pᵣₐᵥₐ fused to a redox partner in compactin-producing P. chrysogenum yielded more than 6 g/L pravastatin at a pilot production scale, providing an effective new route to industrial scale production of an important drug.
Significance Statins are successful widely used drugs that decrease the risk of coronary heart disease and strokes by lowering cholesterol levels. They selectively inhibit the key regulatory enzyme of the cholesterol synthesis pathway, thus lowering levels of plasma LDL (bad) cholesterol. Pravastatin is one of the leading and most effective statins, derived from the natural product compactin. However, pravastatin production involves a costly dual-step fermentation and biotransformation process. Here we present a single-step fermentative method for production of the active drug pravastatin. Reprogramming of the antibiotics-producing fungus Penicillium chrysogenum , with discovery and engineering of an enzyme involved in the hydroxylation of compactin, enables high level fermentation of the correct form of pravastatin to facilitate efficient industrial-scale statin drug production.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25691737</pmid><doi>10.1073/pnas.1419028112</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7193-5044</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (9), p.2847-2852 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1803135326 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amycolatopsis orientalis Antibiotics anticholesteremic agents Bacteria Base Sequence Biological Sciences biotransformation Cholesterol coronary disease Crystal structure Crystallography, X-Ray Cytochrome P-450 Enzyme System - chemistry Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism engineering Fermentation Fractionation Fungal Proteins - chemistry Fungal Proteins - genetics Fungal Proteins - metabolism fungi hydroxylation low density lipoprotein Molecular Sequence Data Mutation Penicillium chrysogenum Penicillium chrysogenum - enzymology Penicillium chrysogenum - genetics Physical Sciences Pravastatin - biosynthesis risk Stereoisomerism |
title | Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-step%20fermentative%20production%20of%20the%20cholesterol-lowering%20drug%20pravastatin%20via%20reprogramming%20of%20Penicillium%20chrysogenum&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=McLean,%20Kirsty%20J&rft.date=2015-03-03&rft.volume=112&rft.issue=9&rft.spage=2847&rft.epage=2852&rft.pages=2847-2852&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1419028112&rft_dat=%3Cproquest_pubme%3E1803135326%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661724797&rft_id=info:pmid/25691737&rfr_iscdi=true |