Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle
Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, a...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-07, Vol.111 (27), p.9828-9833 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9833 |
---|---|
container_issue | 27 |
container_start_page | 9828 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Feillet, Céline Krusche, Peter Tamanini, Filippo Janssens, Roel C. Downey, Mike J. Martin, Patrick Teboul, Michèle Saito, Shoko Lévi, Francis A. Bretschneider, Till van der Horst, Gijsbertus T. J. Delaunay, Franck Rand, David A. |
description | Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. |
doi_str_mv | 10.1073/pnas.1320474111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803134413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23802672</jstor_id><sourcerecordid>23802672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c657t-559ad15fddaeb66c47fac80228e74050800264e59a2f75206386644f47a7d1a23</originalsourceid><addsrcrecordid>eNqFks9v0zAUxy0EYmVw5gRE4gKHbu_5dy5I07QxpEogwc7Gc5w2xYm7OJm0_x5nLS3swsmW_Xkf289fQl4jnCAodrrpbDpBRoErjohPyAyhxLnkJTwlMwCq5ppTfkRepLQGgFJoeE6OKM8TrfmM_Py2sskXIbpfTbcsbFcV7RiGZhN8EZNrQrDDw8Yw9NYNsU9FHftiWPnCxTFTmbdta0Nju8JNmgeH8yEU7t4F_5I8q21I_tVuPCbXlxc_zq_mi6-fv5yfLeZOCjXMhShthaKuKutvpHRc1dZpoFR7xUGAzm-R3GeK1kpQkExLyXnNlVUVWsqOyaetdzPetL5yvssXDmbTN63t7020jfl3p2tWZhnvDEdgjEEWfNwKVo_Krs4WZloD5BRB8DvM7IfdYX28HX0aTNuk6c2283FMBjUwZJwj-z8qpNSCCSEz-v4Ruo5j3-WuZYoLrSRjIlOnW8r1MaXe1_vLIpgpFGYKhTmEIle8_bs1e_5PCjLwbgdMlXsdoqHKlJrqTLzZEuuUM3AwsPxFUtGDobbR2GXfJHP9nQJKyF3jVCL7DS1gzok</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545876335</pqid></control><display><type>article</type><title>Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Feillet, Céline ; Krusche, Peter ; Tamanini, Filippo ; Janssens, Roel C. ; Downey, Mike J. ; Martin, Patrick ; Teboul, Michèle ; Saito, Shoko ; Lévi, Francis A. ; Bretschneider, Till ; van der Horst, Gijsbertus T. J. ; Delaunay, Franck ; Rand, David A.</creator><creatorcontrib>Feillet, Céline ; Krusche, Peter ; Tamanini, Filippo ; Janssens, Roel C. ; Downey, Mike J. ; Martin, Patrick ; Teboul, Michèle ; Saito, Shoko ; Lévi, Francis A. ; Bretschneider, Till ; van der Horst, Gijsbertus T. J. ; Delaunay, Franck ; Rand, David A.</creatorcontrib><description>Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1320474111</identifier><identifier>PMID: 24958884</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cancellations ; Cancer ; Cell cycle ; Cell Cycle Proteins ; Cell Cycle Proteins - metabolism ; Cell division ; Cell lines ; Cell tracking ; Circadian Rhythm ; Circadian Rhythm - drug effects ; CLOCK Proteins ; CLOCK Proteins - metabolism ; Clocks ; Daughter cells ; Development Biology ; Dexamethasone ; Dexamethasone - pharmacology ; Fibroblasts ; Life Sciences ; Mammals ; mathematical models ; Mice ; multispectral imagery ; neoplasms ; NIH 3T3 Cells ; Oscillators ; Pathogenesis ; Periodic orbits ; Physical Sciences ; Tissues ; Trajectories</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-07, Vol.111 (27), p.9828-9833</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 8, 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c657t-559ad15fddaeb66c47fac80228e74050800264e59a2f75206386644f47a7d1a23</citedby><cites>FETCH-LOGICAL-c657t-559ad15fddaeb66c47fac80228e74050800264e59a2f75206386644f47a7d1a23</cites><orcidid>0000-0003-4927-1701 ; 0000-0001-7507-5910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23802672$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23802672$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24958884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01421054$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Feillet, Céline</creatorcontrib><creatorcontrib>Krusche, Peter</creatorcontrib><creatorcontrib>Tamanini, Filippo</creatorcontrib><creatorcontrib>Janssens, Roel C.</creatorcontrib><creatorcontrib>Downey, Mike J.</creatorcontrib><creatorcontrib>Martin, Patrick</creatorcontrib><creatorcontrib>Teboul, Michèle</creatorcontrib><creatorcontrib>Saito, Shoko</creatorcontrib><creatorcontrib>Lévi, Francis A.</creatorcontrib><creatorcontrib>Bretschneider, Till</creatorcontrib><creatorcontrib>van der Horst, Gijsbertus T. J.</creatorcontrib><creatorcontrib>Delaunay, Franck</creatorcontrib><creatorcontrib>Rand, David A.</creatorcontrib><title>Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cancellations</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell division</subject><subject>Cell lines</subject><subject>Cell tracking</subject><subject>Circadian Rhythm</subject><subject>Circadian Rhythm - drug effects</subject><subject>CLOCK Proteins</subject><subject>CLOCK Proteins - metabolism</subject><subject>Clocks</subject><subject>Daughter cells</subject><subject>Development Biology</subject><subject>Dexamethasone</subject><subject>Dexamethasone - pharmacology</subject><subject>Fibroblasts</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>mathematical models</subject><subject>Mice</subject><subject>multispectral imagery</subject><subject>neoplasms</subject><subject>NIH 3T3 Cells</subject><subject>Oscillators</subject><subject>Pathogenesis</subject><subject>Periodic orbits</subject><subject>Physical Sciences</subject><subject>Tissues</subject><subject>Trajectories</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9v0zAUxy0EYmVw5gRE4gKHbu_5dy5I07QxpEogwc7Gc5w2xYm7OJm0_x5nLS3swsmW_Xkf289fQl4jnCAodrrpbDpBRoErjohPyAyhxLnkJTwlMwCq5ppTfkRepLQGgFJoeE6OKM8TrfmM_Py2sskXIbpfTbcsbFcV7RiGZhN8EZNrQrDDw8Yw9NYNsU9FHftiWPnCxTFTmbdta0Nju8JNmgeH8yEU7t4F_5I8q21I_tVuPCbXlxc_zq_mi6-fv5yfLeZOCjXMhShthaKuKutvpHRc1dZpoFR7xUGAzm-R3GeK1kpQkExLyXnNlVUVWsqOyaetdzPetL5yvssXDmbTN63t7020jfl3p2tWZhnvDEdgjEEWfNwKVo_Krs4WZloD5BRB8DvM7IfdYX28HX0aTNuk6c2283FMBjUwZJwj-z8qpNSCCSEz-v4Ruo5j3-WuZYoLrSRjIlOnW8r1MaXe1_vLIpgpFGYKhTmEIle8_bs1e_5PCjLwbgdMlXsdoqHKlJrqTLzZEuuUM3AwsPxFUtGDobbR2GXfJHP9nQJKyF3jVCL7DS1gzok</recordid><startdate>20140708</startdate><enddate>20140708</enddate><creator>Feillet, Céline</creator><creator>Krusche, Peter</creator><creator>Tamanini, Filippo</creator><creator>Janssens, Roel C.</creator><creator>Downey, Mike J.</creator><creator>Martin, Patrick</creator><creator>Teboul, Michèle</creator><creator>Saito, Shoko</creator><creator>Lévi, Francis A.</creator><creator>Bretschneider, Till</creator><creator>van der Horst, Gijsbertus T. J.</creator><creator>Delaunay, Franck</creator><creator>Rand, David A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4927-1701</orcidid><orcidid>https://orcid.org/0000-0001-7507-5910</orcidid></search><sort><creationdate>20140708</creationdate><title>Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle</title><author>Feillet, Céline ; Krusche, Peter ; Tamanini, Filippo ; Janssens, Roel C. ; Downey, Mike J. ; Martin, Patrick ; Teboul, Michèle ; Saito, Shoko ; Lévi, Francis A. ; Bretschneider, Till ; van der Horst, Gijsbertus T. J. ; Delaunay, Franck ; Rand, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c657t-559ad15fddaeb66c47fac80228e74050800264e59a2f75206386644f47a7d1a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cancellations</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell division</topic><topic>Cell lines</topic><topic>Cell tracking</topic><topic>Circadian Rhythm</topic><topic>Circadian Rhythm - drug effects</topic><topic>CLOCK Proteins</topic><topic>CLOCK Proteins - metabolism</topic><topic>Clocks</topic><topic>Daughter cells</topic><topic>Development Biology</topic><topic>Dexamethasone</topic><topic>Dexamethasone - pharmacology</topic><topic>Fibroblasts</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>mathematical models</topic><topic>Mice</topic><topic>multispectral imagery</topic><topic>neoplasms</topic><topic>NIH 3T3 Cells</topic><topic>Oscillators</topic><topic>Pathogenesis</topic><topic>Periodic orbits</topic><topic>Physical Sciences</topic><topic>Tissues</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feillet, Céline</creatorcontrib><creatorcontrib>Krusche, Peter</creatorcontrib><creatorcontrib>Tamanini, Filippo</creatorcontrib><creatorcontrib>Janssens, Roel C.</creatorcontrib><creatorcontrib>Downey, Mike J.</creatorcontrib><creatorcontrib>Martin, Patrick</creatorcontrib><creatorcontrib>Teboul, Michèle</creatorcontrib><creatorcontrib>Saito, Shoko</creatorcontrib><creatorcontrib>Lévi, Francis A.</creatorcontrib><creatorcontrib>Bretschneider, Till</creatorcontrib><creatorcontrib>van der Horst, Gijsbertus T. J.</creatorcontrib><creatorcontrib>Delaunay, Franck</creatorcontrib><creatorcontrib>Rand, David A.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feillet, Céline</au><au>Krusche, Peter</au><au>Tamanini, Filippo</au><au>Janssens, Roel C.</au><au>Downey, Mike J.</au><au>Martin, Patrick</au><au>Teboul, Michèle</au><au>Saito, Shoko</au><au>Lévi, Francis A.</au><au>Bretschneider, Till</au><au>van der Horst, Gijsbertus T. J.</au><au>Delaunay, Franck</au><au>Rand, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-07-08</date><risdate>2014</risdate><volume>111</volume><issue>27</issue><spage>9828</spage><epage>9833</epage><pages>9828-9833</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24958884</pmid><doi>10.1073/pnas.1320474111</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4927-1701</orcidid><orcidid>https://orcid.org/0000-0001-7507-5910</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-07, Vol.111 (27), p.9828-9833 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1803134413 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Cancellations Cancer Cell cycle Cell Cycle Proteins Cell Cycle Proteins - metabolism Cell division Cell lines Cell tracking Circadian Rhythm Circadian Rhythm - drug effects CLOCK Proteins CLOCK Proteins - metabolism Clocks Daughter cells Development Biology Dexamethasone Dexamethasone - pharmacology Fibroblasts Life Sciences Mammals mathematical models Mice multispectral imagery neoplasms NIH 3T3 Cells Oscillators Pathogenesis Periodic orbits Physical Sciences Tissues Trajectories |
title | Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20locking%20and%20multiple%20oscillating%20attractors%20for%20the%20coupled%20mammalian%20clock%20and%20cell%20cycle&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Feillet,%20C%C3%A9line&rft.date=2014-07-08&rft.volume=111&rft.issue=27&rft.spage=9828&rft.epage=9833&rft.pages=9828-9833&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1320474111&rft_dat=%3Cjstor_proqu%3E23802672%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545876335&rft_id=info:pmid/24958884&rft_jstor_id=23802672&rfr_iscdi=true |