Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-07, Vol.111 (27), p.9828-9833
Hauptverfasser: Feillet, Céline, Krusche, Peter, Tamanini, Filippo, Janssens, Roel C., Downey, Mike J., Martin, Patrick, Teboul, Michèle, Saito, Shoko, Lévi, Francis A., Bretschneider, Till, van der Horst, Gijsbertus T. J., Delaunay, Franck, Rand, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9833
container_issue 27
container_start_page 9828
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Feillet, Céline
Krusche, Peter
Tamanini, Filippo
Janssens, Roel C.
Downey, Mike J.
Martin, Patrick
Teboul, Michèle
Saito, Shoko
Lévi, Francis A.
Bretschneider, Till
van der Horst, Gijsbertus T. J.
Delaunay, Franck
Rand, David A.
description Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.
doi_str_mv 10.1073/pnas.1320474111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803134413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23802672</jstor_id><sourcerecordid>23802672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c657t-559ad15fddaeb66c47fac80228e74050800264e59a2f75206386644f47a7d1a23</originalsourceid><addsrcrecordid>eNqFks9v0zAUxy0EYmVw5gRE4gKHbu_5dy5I07QxpEogwc7Gc5w2xYm7OJm0_x5nLS3swsmW_Xkf289fQl4jnCAodrrpbDpBRoErjohPyAyhxLnkJTwlMwCq5ppTfkRepLQGgFJoeE6OKM8TrfmM_Py2sskXIbpfTbcsbFcV7RiGZhN8EZNrQrDDw8Yw9NYNsU9FHftiWPnCxTFTmbdta0Nju8JNmgeH8yEU7t4F_5I8q21I_tVuPCbXlxc_zq_mi6-fv5yfLeZOCjXMhShthaKuKutvpHRc1dZpoFR7xUGAzm-R3GeK1kpQkExLyXnNlVUVWsqOyaetdzPetL5yvssXDmbTN63t7020jfl3p2tWZhnvDEdgjEEWfNwKVo_Krs4WZloD5BRB8DvM7IfdYX28HX0aTNuk6c2283FMBjUwZJwj-z8qpNSCCSEz-v4Ruo5j3-WuZYoLrSRjIlOnW8r1MaXe1_vLIpgpFGYKhTmEIle8_bs1e_5PCjLwbgdMlXsdoqHKlJrqTLzZEuuUM3AwsPxFUtGDobbR2GXfJHP9nQJKyF3jVCL7DS1gzok</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545876335</pqid></control><display><type>article</type><title>Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Feillet, Céline ; Krusche, Peter ; Tamanini, Filippo ; Janssens, Roel C. ; Downey, Mike J. ; Martin, Patrick ; Teboul, Michèle ; Saito, Shoko ; Lévi, Francis A. ; Bretschneider, Till ; van der Horst, Gijsbertus T. J. ; Delaunay, Franck ; Rand, David A.</creator><creatorcontrib>Feillet, Céline ; Krusche, Peter ; Tamanini, Filippo ; Janssens, Roel C. ; Downey, Mike J. ; Martin, Patrick ; Teboul, Michèle ; Saito, Shoko ; Lévi, Francis A. ; Bretschneider, Till ; van der Horst, Gijsbertus T. J. ; Delaunay, Franck ; Rand, David A.</creatorcontrib><description>Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1320474111</identifier><identifier>PMID: 24958884</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cancellations ; Cancer ; Cell cycle ; Cell Cycle Proteins ; Cell Cycle Proteins - metabolism ; Cell division ; Cell lines ; Cell tracking ; Circadian Rhythm ; Circadian Rhythm - drug effects ; CLOCK Proteins ; CLOCK Proteins - metabolism ; Clocks ; Daughter cells ; Development Biology ; Dexamethasone ; Dexamethasone - pharmacology ; Fibroblasts ; Life Sciences ; Mammals ; mathematical models ; Mice ; multispectral imagery ; neoplasms ; NIH 3T3 Cells ; Oscillators ; Pathogenesis ; Periodic orbits ; Physical Sciences ; Tissues ; Trajectories</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-07, Vol.111 (27), p.9828-9833</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 8, 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c657t-559ad15fddaeb66c47fac80228e74050800264e59a2f75206386644f47a7d1a23</citedby><cites>FETCH-LOGICAL-c657t-559ad15fddaeb66c47fac80228e74050800264e59a2f75206386644f47a7d1a23</cites><orcidid>0000-0003-4927-1701 ; 0000-0001-7507-5910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23802672$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23802672$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24958884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01421054$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Feillet, Céline</creatorcontrib><creatorcontrib>Krusche, Peter</creatorcontrib><creatorcontrib>Tamanini, Filippo</creatorcontrib><creatorcontrib>Janssens, Roel C.</creatorcontrib><creatorcontrib>Downey, Mike J.</creatorcontrib><creatorcontrib>Martin, Patrick</creatorcontrib><creatorcontrib>Teboul, Michèle</creatorcontrib><creatorcontrib>Saito, Shoko</creatorcontrib><creatorcontrib>Lévi, Francis A.</creatorcontrib><creatorcontrib>Bretschneider, Till</creatorcontrib><creatorcontrib>van der Horst, Gijsbertus T. J.</creatorcontrib><creatorcontrib>Delaunay, Franck</creatorcontrib><creatorcontrib>Rand, David A.</creatorcontrib><title>Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cancellations</subject><subject>Cancer</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell division</subject><subject>Cell lines</subject><subject>Cell tracking</subject><subject>Circadian Rhythm</subject><subject>Circadian Rhythm - drug effects</subject><subject>CLOCK Proteins</subject><subject>CLOCK Proteins - metabolism</subject><subject>Clocks</subject><subject>Daughter cells</subject><subject>Development Biology</subject><subject>Dexamethasone</subject><subject>Dexamethasone - pharmacology</subject><subject>Fibroblasts</subject><subject>Life Sciences</subject><subject>Mammals</subject><subject>mathematical models</subject><subject>Mice</subject><subject>multispectral imagery</subject><subject>neoplasms</subject><subject>NIH 3T3 Cells</subject><subject>Oscillators</subject><subject>Pathogenesis</subject><subject>Periodic orbits</subject><subject>Physical Sciences</subject><subject>Tissues</subject><subject>Trajectories</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks9v0zAUxy0EYmVw5gRE4gKHbu_5dy5I07QxpEogwc7Gc5w2xYm7OJm0_x5nLS3swsmW_Xkf289fQl4jnCAodrrpbDpBRoErjohPyAyhxLnkJTwlMwCq5ppTfkRepLQGgFJoeE6OKM8TrfmM_Py2sskXIbpfTbcsbFcV7RiGZhN8EZNrQrDDw8Yw9NYNsU9FHftiWPnCxTFTmbdta0Nju8JNmgeH8yEU7t4F_5I8q21I_tVuPCbXlxc_zq_mi6-fv5yfLeZOCjXMhShthaKuKutvpHRc1dZpoFR7xUGAzm-R3GeK1kpQkExLyXnNlVUVWsqOyaetdzPetL5yvssXDmbTN63t7020jfl3p2tWZhnvDEdgjEEWfNwKVo_Krs4WZloD5BRB8DvM7IfdYX28HX0aTNuk6c2283FMBjUwZJwj-z8qpNSCCSEz-v4Ruo5j3-WuZYoLrSRjIlOnW8r1MaXe1_vLIpgpFGYKhTmEIle8_bs1e_5PCjLwbgdMlXsdoqHKlJrqTLzZEuuUM3AwsPxFUtGDobbR2GXfJHP9nQJKyF3jVCL7DS1gzok</recordid><startdate>20140708</startdate><enddate>20140708</enddate><creator>Feillet, Céline</creator><creator>Krusche, Peter</creator><creator>Tamanini, Filippo</creator><creator>Janssens, Roel C.</creator><creator>Downey, Mike J.</creator><creator>Martin, Patrick</creator><creator>Teboul, Michèle</creator><creator>Saito, Shoko</creator><creator>Lévi, Francis A.</creator><creator>Bretschneider, Till</creator><creator>van der Horst, Gijsbertus T. J.</creator><creator>Delaunay, Franck</creator><creator>Rand, David A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4927-1701</orcidid><orcidid>https://orcid.org/0000-0001-7507-5910</orcidid></search><sort><creationdate>20140708</creationdate><title>Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle</title><author>Feillet, Céline ; Krusche, Peter ; Tamanini, Filippo ; Janssens, Roel C. ; Downey, Mike J. ; Martin, Patrick ; Teboul, Michèle ; Saito, Shoko ; Lévi, Francis A. ; Bretschneider, Till ; van der Horst, Gijsbertus T. J. ; Delaunay, Franck ; Rand, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c657t-559ad15fddaeb66c47fac80228e74050800264e59a2f75206386644f47a7d1a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cancellations</topic><topic>Cancer</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell division</topic><topic>Cell lines</topic><topic>Cell tracking</topic><topic>Circadian Rhythm</topic><topic>Circadian Rhythm - drug effects</topic><topic>CLOCK Proteins</topic><topic>CLOCK Proteins - metabolism</topic><topic>Clocks</topic><topic>Daughter cells</topic><topic>Development Biology</topic><topic>Dexamethasone</topic><topic>Dexamethasone - pharmacology</topic><topic>Fibroblasts</topic><topic>Life Sciences</topic><topic>Mammals</topic><topic>mathematical models</topic><topic>Mice</topic><topic>multispectral imagery</topic><topic>neoplasms</topic><topic>NIH 3T3 Cells</topic><topic>Oscillators</topic><topic>Pathogenesis</topic><topic>Periodic orbits</topic><topic>Physical Sciences</topic><topic>Tissues</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feillet, Céline</creatorcontrib><creatorcontrib>Krusche, Peter</creatorcontrib><creatorcontrib>Tamanini, Filippo</creatorcontrib><creatorcontrib>Janssens, Roel C.</creatorcontrib><creatorcontrib>Downey, Mike J.</creatorcontrib><creatorcontrib>Martin, Patrick</creatorcontrib><creatorcontrib>Teboul, Michèle</creatorcontrib><creatorcontrib>Saito, Shoko</creatorcontrib><creatorcontrib>Lévi, Francis A.</creatorcontrib><creatorcontrib>Bretschneider, Till</creatorcontrib><creatorcontrib>van der Horst, Gijsbertus T. J.</creatorcontrib><creatorcontrib>Delaunay, Franck</creatorcontrib><creatorcontrib>Rand, David A.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feillet, Céline</au><au>Krusche, Peter</au><au>Tamanini, Filippo</au><au>Janssens, Roel C.</au><au>Downey, Mike J.</au><au>Martin, Patrick</au><au>Teboul, Michèle</au><au>Saito, Shoko</au><au>Lévi, Francis A.</au><au>Bretschneider, Till</au><au>van der Horst, Gijsbertus T. J.</au><au>Delaunay, Franck</au><au>Rand, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-07-08</date><risdate>2014</risdate><volume>111</volume><issue>27</issue><spage>9828</spage><epage>9833</epage><pages>9828-9833</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24958884</pmid><doi>10.1073/pnas.1320474111</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4927-1701</orcidid><orcidid>https://orcid.org/0000-0001-7507-5910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-07, Vol.111 (27), p.9828-9833
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1803134413
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Cancellations
Cancer
Cell cycle
Cell Cycle Proteins
Cell Cycle Proteins - metabolism
Cell division
Cell lines
Cell tracking
Circadian Rhythm
Circadian Rhythm - drug effects
CLOCK Proteins
CLOCK Proteins - metabolism
Clocks
Daughter cells
Development Biology
Dexamethasone
Dexamethasone - pharmacology
Fibroblasts
Life Sciences
Mammals
mathematical models
Mice
multispectral imagery
neoplasms
NIH 3T3 Cells
Oscillators
Pathogenesis
Periodic orbits
Physical Sciences
Tissues
Trajectories
title Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20locking%20and%20multiple%20oscillating%20attractors%20for%20the%20coupled%20mammalian%20clock%20and%20cell%20cycle&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Feillet,%20C%C3%A9line&rft.date=2014-07-08&rft.volume=111&rft.issue=27&rft.spage=9828&rft.epage=9833&rft.pages=9828-9833&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1320474111&rft_dat=%3Cjstor_proqu%3E23802672%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545876335&rft_id=info:pmid/24958884&rft_jstor_id=23802672&rfr_iscdi=true