Control of slippage with tunable bubble mattresses
Tailoring the hydrodynamic boundary condition is essential for both applied and fundamental aspects of drag reduction. Hydrodynamic friction on superhydrophobic substrates providing gas–liquid interfaces can potentially be optimized by controlling the interface geometry. Therefore, establishing stab...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-05, Vol.110 (21), p.8422-8426 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8426 |
---|---|
container_issue | 21 |
container_start_page | 8422 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Karatay, Elif Haase, A. Sander Visser, Claas Willem Sun, Chao Lohse, Detlef Tsai, Peichun Amy Lammertink, Rob G. H. |
description | Tailoring the hydrodynamic boundary condition is essential for both applied and fundamental aspects of drag reduction. Hydrodynamic friction on superhydrophobic substrates providing gas–liquid interfaces can potentially be optimized by controlling the interface geometry. Therefore, establishing stable and optimal interfaces is crucial but rather challenging. Here we present unique superhydrophobic microfluidic devices that allow the presence of stable and controllable microbubbles at the boundary of microchannels. We experimentally and numerically examine the effect of microbubble geometry on the slippage at high resolution. The effective slip length is obtained for a wide range of protrusion angles, θ , of the microbubbles into the flow, using a microparticle image velocimetry technique. Our numerical results reveal a maximum effective slip length, corresponding to a 23% drag reduction at an optimal θ ≈ 10°. In agreement with the simulation results, our measurements correspond to up to 21% drag reduction when θ is in the range of −2° to 12°. The experimental and numerical results reveal a decrease in slip length with increasing protrusion angles when θ ≳ 10°. Such microfluidic devices with tunable slippage are essential for the amplified interfacial transport of fluids and particles. |
doi_str_mv | 10.1073/pnas.1304403110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803119960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42656738</jstor_id><sourcerecordid>42656738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-bbc3b3077f55b8f67c67b7dddc9f1abe799f899acbd40b9f985212c669194fea3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERZfCmRMQqRcuacff8QUJrQpUqtQD9GzZjr3NKhsHOwHx73HYZQtc6ssc_Mzj8bwIvcJwgUHSy3Ew-QJTYAwoxvAErTAoXAum4ClaARBZN4ywU_Q85y0AKN7AM3RKqOBAOVkhso7DlGJfxVDlvhtHs_HVj266r6Z5MLb3lZ3tUnZmmpLP2ecX6CSYPvuXh3qG7j5efV1_rm9uP12vP9zUjhM21dY6ailIGTi3TRDSCWll27ZOBWysl0qFRinjbMvAqqAaTjBxQiisWPCGnqH3e-84251vnS-Dml6PqduZ9FNH0-l_b4buXm_id01FOVIUwbuDIMVvs8-T3nXZ-b43g49z1rhZlqaUgMdRyplURCha0PP_0G2c01A2sVACiIDfwss95VLMOflwnBuDXqLTS3T6IbrS8ebv7x75P1kV4O0BWDqPuuIjWJeUF-L1ntjmKaYjwojgQtLmwRBM1GaTuqzvvhDAAgBTScszvwCSq7Fk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356026060</pqid></control><display><type>article</type><title>Control of slippage with tunable bubble mattresses</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Karatay, Elif ; Haase, A. Sander ; Visser, Claas Willem ; Sun, Chao ; Lohse, Detlef ; Tsai, Peichun Amy ; Lammertink, Rob G. H.</creator><creatorcontrib>Karatay, Elif ; Haase, A. Sander ; Visser, Claas Willem ; Sun, Chao ; Lohse, Detlef ; Tsai, Peichun Amy ; Lammertink, Rob G. H.</creatorcontrib><description>Tailoring the hydrodynamic boundary condition is essential for both applied and fundamental aspects of drag reduction. Hydrodynamic friction on superhydrophobic substrates providing gas–liquid interfaces can potentially be optimized by controlling the interface geometry. Therefore, establishing stable and optimal interfaces is crucial but rather challenging. Here we present unique superhydrophobic microfluidic devices that allow the presence of stable and controllable microbubbles at the boundary of microchannels. We experimentally and numerically examine the effect of microbubble geometry on the slippage at high resolution. The effective slip length is obtained for a wide range of protrusion angles, θ , of the microbubbles into the flow, using a microparticle image velocimetry technique. Our numerical results reveal a maximum effective slip length, corresponding to a 23% drag reduction at an optimal θ ≈ 10°. In agreement with the simulation results, our measurements correspond to up to 21% drag reduction when θ is in the range of −2° to 12°. The experimental and numerical results reveal a decrease in slip length with increasing protrusion angles when θ ≳ 10°. Such microfluidic devices with tunable slippage are essential for the amplified interfacial transport of fluids and particles.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1304403110</identifier><identifier>PMID: 23650352</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Boundary conditions ; Bubbles ; Curvature ; Drag reduction ; Flow velocity ; Fluid mechanics ; Fluids ; Friction ; Friction factor ; Hydrodynamics ; hydrophobicity ; Microbubbles ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microfluidic devices ; Models, Theoretical ; Physical Sciences ; Simulation ; Substrates ; Velocity distribution</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (21), p.8422-8426</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 21, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-bbc3b3077f55b8f67c67b7dddc9f1abe799f899acbd40b9f985212c669194fea3</citedby><cites>FETCH-LOGICAL-c524t-bbc3b3077f55b8f67c67b7dddc9f1abe799f899acbd40b9f985212c669194fea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42656738$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42656738$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23650352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Karatay, Elif</creatorcontrib><creatorcontrib>Haase, A. Sander</creatorcontrib><creatorcontrib>Visser, Claas Willem</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><creatorcontrib>Tsai, Peichun Amy</creatorcontrib><creatorcontrib>Lammertink, Rob G. H.</creatorcontrib><title>Control of slippage with tunable bubble mattresses</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tailoring the hydrodynamic boundary condition is essential for both applied and fundamental aspects of drag reduction. Hydrodynamic friction on superhydrophobic substrates providing gas–liquid interfaces can potentially be optimized by controlling the interface geometry. Therefore, establishing stable and optimal interfaces is crucial but rather challenging. Here we present unique superhydrophobic microfluidic devices that allow the presence of stable and controllable microbubbles at the boundary of microchannels. We experimentally and numerically examine the effect of microbubble geometry on the slippage at high resolution. The effective slip length is obtained for a wide range of protrusion angles, θ , of the microbubbles into the flow, using a microparticle image velocimetry technique. Our numerical results reveal a maximum effective slip length, corresponding to a 23% drag reduction at an optimal θ ≈ 10°. In agreement with the simulation results, our measurements correspond to up to 21% drag reduction when θ is in the range of −2° to 12°. The experimental and numerical results reveal a decrease in slip length with increasing protrusion angles when θ ≳ 10°. Such microfluidic devices with tunable slippage are essential for the amplified interfacial transport of fluids and particles.</description><subject>Boundary conditions</subject><subject>Bubbles</subject><subject>Curvature</subject><subject>Drag reduction</subject><subject>Flow velocity</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Friction</subject><subject>Friction factor</subject><subject>Hydrodynamics</subject><subject>hydrophobicity</subject><subject>Microbubbles</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidic devices</subject><subject>Models, Theoretical</subject><subject>Physical Sciences</subject><subject>Simulation</subject><subject>Substrates</subject><subject>Velocity distribution</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi1ERZfCmRMQqRcuacff8QUJrQpUqtQD9GzZjr3NKhsHOwHx73HYZQtc6ssc_Mzj8bwIvcJwgUHSy3Ew-QJTYAwoxvAErTAoXAum4ClaARBZN4ywU_Q85y0AKN7AM3RKqOBAOVkhso7DlGJfxVDlvhtHs_HVj266r6Z5MLb3lZ3tUnZmmpLP2ecX6CSYPvuXh3qG7j5efV1_rm9uP12vP9zUjhM21dY6ailIGTi3TRDSCWll27ZOBWysl0qFRinjbMvAqqAaTjBxQiisWPCGnqH3e-84251vnS-Dml6PqduZ9FNH0-l_b4buXm_id01FOVIUwbuDIMVvs8-T3nXZ-b43g49z1rhZlqaUgMdRyplURCha0PP_0G2c01A2sVACiIDfwss95VLMOflwnBuDXqLTS3T6IbrS8ebv7x75P1kV4O0BWDqPuuIjWJeUF-L1ntjmKaYjwojgQtLmwRBM1GaTuqzvvhDAAgBTScszvwCSq7Fk</recordid><startdate>20130521</startdate><enddate>20130521</enddate><creator>Karatay, Elif</creator><creator>Haase, A. Sander</creator><creator>Visser, Claas Willem</creator><creator>Sun, Chao</creator><creator>Lohse, Detlef</creator><creator>Tsai, Peichun Amy</creator><creator>Lammertink, Rob G. H.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130521</creationdate><title>Control of slippage with tunable bubble mattresses</title><author>Karatay, Elif ; Haase, A. Sander ; Visser, Claas Willem ; Sun, Chao ; Lohse, Detlef ; Tsai, Peichun Amy ; Lammertink, Rob G. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-bbc3b3077f55b8f67c67b7dddc9f1abe799f899acbd40b9f985212c669194fea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundary conditions</topic><topic>Bubbles</topic><topic>Curvature</topic><topic>Drag reduction</topic><topic>Flow velocity</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Friction</topic><topic>Friction factor</topic><topic>Hydrodynamics</topic><topic>hydrophobicity</topic><topic>Microbubbles</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidic devices</topic><topic>Models, Theoretical</topic><topic>Physical Sciences</topic><topic>Simulation</topic><topic>Substrates</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karatay, Elif</creatorcontrib><creatorcontrib>Haase, A. Sander</creatorcontrib><creatorcontrib>Visser, Claas Willem</creatorcontrib><creatorcontrib>Sun, Chao</creatorcontrib><creatorcontrib>Lohse, Detlef</creatorcontrib><creatorcontrib>Tsai, Peichun Amy</creatorcontrib><creatorcontrib>Lammertink, Rob G. H.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karatay, Elif</au><au>Haase, A. Sander</au><au>Visser, Claas Willem</au><au>Sun, Chao</au><au>Lohse, Detlef</au><au>Tsai, Peichun Amy</au><au>Lammertink, Rob G. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of slippage with tunable bubble mattresses</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-05-21</date><risdate>2013</risdate><volume>110</volume><issue>21</issue><spage>8422</spage><epage>8426</epage><pages>8422-8426</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tailoring the hydrodynamic boundary condition is essential for both applied and fundamental aspects of drag reduction. Hydrodynamic friction on superhydrophobic substrates providing gas–liquid interfaces can potentially be optimized by controlling the interface geometry. Therefore, establishing stable and optimal interfaces is crucial but rather challenging. Here we present unique superhydrophobic microfluidic devices that allow the presence of stable and controllable microbubbles at the boundary of microchannels. We experimentally and numerically examine the effect of microbubble geometry on the slippage at high resolution. The effective slip length is obtained for a wide range of protrusion angles, θ , of the microbubbles into the flow, using a microparticle image velocimetry technique. Our numerical results reveal a maximum effective slip length, corresponding to a 23% drag reduction at an optimal θ ≈ 10°. In agreement with the simulation results, our measurements correspond to up to 21% drag reduction when θ is in the range of −2° to 12°. The experimental and numerical results reveal a decrease in slip length with increasing protrusion angles when θ ≳ 10°. Such microfluidic devices with tunable slippage are essential for the amplified interfacial transport of fluids and particles.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23650352</pmid><doi>10.1073/pnas.1304403110</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (21), p.8422-8426 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1803119960 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Boundary conditions Bubbles Curvature Drag reduction Flow velocity Fluid mechanics Fluids Friction Friction factor Hydrodynamics hydrophobicity Microbubbles Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Microfluidic devices Models, Theoretical Physical Sciences Simulation Substrates Velocity distribution |
title | Control of slippage with tunable bubble mattresses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20slippage%20with%20tunable%20bubble%20mattresses&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Karatay,%20Elif&rft.date=2013-05-21&rft.volume=110&rft.issue=21&rft.spage=8422&rft.epage=8426&rft.pages=8422-8426&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1304403110&rft_dat=%3Cjstor_proqu%3E42656738%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356026060&rft_id=info:pmid/23650352&rft_jstor_id=42656738&rfr_iscdi=true |