Metabolic niche of a prominent sulfate-reducing human gut bacterium
Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger , the most common SRB in a sur...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-08, Vol.110 (33), p.13582-13587 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13587 |
---|---|
container_issue | 33 |
container_start_page | 13582 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Rey, Federico E. Gonzalez, Mark D. Cheng, Jiye Wu, Meng Ahern, Philip P. Gordon, Jeffrey I. |
description | Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger , the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger , which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides -encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H ₂S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage’s substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H ₂-producing Actinobacterium, Collinsella aerofaciens . Our findings provide genetic and metabolic details of how this H ₂-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it. |
doi_str_mv | 10.1073/pnas.1312524110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803114914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42712950</jstor_id><sourcerecordid>42712950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-8b74faead9811eb1f5cf9d1c0082d8be6eefa50694231b0a0f3932b67d4d61973</originalsourceid><addsrcrecordid>eNpdkcuP0zAQhy0EYrsLZ05ApL1wye6MH4l9WQlVvKRFHGDPluPYraskLnaCxH-Pq5byOM1hvvlmRj9CXiDcILTsdj-ZfIMMqaAcER6RFYLCuuEKHpMVAG1rySm_IJc57wBACQlPyQVlUklUYkXWn91sujgEW03Bbl0VfWWqfYpjmNw0V3kZvJldnVy_2DBtqu0ymqnaLHPVGTu7FJbxGXnizZDd81O9Ig_v331bf6zvv3z4tH57X1uhcK5l13JvnOnLanQdemG96tECSNrLzjXOeSOgUZwy7MCAZ4rRrml73jeoWnZF7o7e_dKNrrflvmQGvU9hNOmnjibofztT2OpN_KFZyxspZBG8OQlS_L64POsxZOuGwUwuLlmjBIbIFfKCXv-H7uKSpvKeRk6FACX5gbo9UjbFnJPz52MQ9CEgfQhI_wmoTLz6-4cz_zuRAlQn4DB51hUfY0UkJC3IyyOyy3NMZ4bTFqkShx2vj31vojabFLJ--EoBGwDkyBrBfgHhX6mj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1425509844</pqid></control><display><type>article</type><title>Metabolic niche of a prominent sulfate-reducing human gut bacterium</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rey, Federico E. ; Gonzalez, Mark D. ; Cheng, Jiye ; Wu, Meng ; Ahern, Philip P. ; Gordon, Jeffrey I.</creator><creatorcontrib>Rey, Federico E. ; Gonzalez, Mark D. ; Cheng, Jiye ; Wu, Meng ; Ahern, Philip P. ; Gordon, Jeffrey I.</creatorcontrib><description>Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger , the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger , which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides -encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H ₂S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage’s substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H ₂-producing Actinobacterium, Collinsella aerofaciens . Our findings provide genetic and metabolic details of how this H ₂-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1312524110</identifier><identifier>PMID: 23898195</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>adults ; Ammonia ; Animals ; Bacteria ; Bacteroides ; Biological Sciences ; Bromodeoxyuridine ; carbon ; chondroitin sulfate ; Chondroitin Sulfates - administration & dosage ; Chondroitin Sulfates - metabolism ; Chondroitin Sulfates - pharmacology ; Collinsella aerofaciens ; Datasets ; Desulfovibrio ; Desulfovibrio - drug effects ; Desulfovibrio - genetics ; Desulfovibrio - growth & development ; Desulfovibrio - metabolism ; Diet ; Dietary Supplements ; Digestive system ; DNA Primers - genetics ; DNA Transposable Elements - genetics ; environmental factors ; Feces - microbiology ; Gas Chromatography-Mass Spectrometry ; Gastrointestinal Tract - microbiology ; genes ; Genetic Vectors - genetics ; Genomes ; Gnotobiotics ; Humans ; Hydrogen ; hydrogen sulfide ; Hydrogen Sulfide - metabolism ; ingredients ; intestinal microorganisms ; Mass Spectrometry ; Metabolism ; Mice ; Microbiota ; Mutagenesis ; Polysaccharides ; Sequence Analysis, DNA ; Species Specificity ; sulfate-reducing bacteria ; Sulfates ; sulfur ; transposons ; United States</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (33), p.13582-13587</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 13, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-8b74faead9811eb1f5cf9d1c0082d8be6eefa50694231b0a0f3932b67d4d61973</citedby><cites>FETCH-LOGICAL-c591t-8b74faead9811eb1f5cf9d1c0082d8be6eefa50694231b0a0f3932b67d4d61973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42712950$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42712950$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23898195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rey, Federico E.</creatorcontrib><creatorcontrib>Gonzalez, Mark D.</creatorcontrib><creatorcontrib>Cheng, Jiye</creatorcontrib><creatorcontrib>Wu, Meng</creatorcontrib><creatorcontrib>Ahern, Philip P.</creatorcontrib><creatorcontrib>Gordon, Jeffrey I.</creatorcontrib><title>Metabolic niche of a prominent sulfate-reducing human gut bacterium</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger , the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger , which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides -encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H ₂S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage’s substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H ₂-producing Actinobacterium, Collinsella aerofaciens . Our findings provide genetic and metabolic details of how this H ₂-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.</description><subject>adults</subject><subject>Ammonia</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteroides</subject><subject>Biological Sciences</subject><subject>Bromodeoxyuridine</subject><subject>carbon</subject><subject>chondroitin sulfate</subject><subject>Chondroitin Sulfates - administration & dosage</subject><subject>Chondroitin Sulfates - metabolism</subject><subject>Chondroitin Sulfates - pharmacology</subject><subject>Collinsella aerofaciens</subject><subject>Datasets</subject><subject>Desulfovibrio</subject><subject>Desulfovibrio - drug effects</subject><subject>Desulfovibrio - genetics</subject><subject>Desulfovibrio - growth & development</subject><subject>Desulfovibrio - metabolism</subject><subject>Diet</subject><subject>Dietary Supplements</subject><subject>Digestive system</subject><subject>DNA Primers - genetics</subject><subject>DNA Transposable Elements - genetics</subject><subject>environmental factors</subject><subject>Feces - microbiology</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Gastrointestinal Tract - microbiology</subject><subject>genes</subject><subject>Genetic Vectors - genetics</subject><subject>Genomes</subject><subject>Gnotobiotics</subject><subject>Humans</subject><subject>Hydrogen</subject><subject>hydrogen sulfide</subject><subject>Hydrogen Sulfide - metabolism</subject><subject>ingredients</subject><subject>intestinal microorganisms</subject><subject>Mass Spectrometry</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Microbiota</subject><subject>Mutagenesis</subject><subject>Polysaccharides</subject><subject>Sequence Analysis, DNA</subject><subject>Species Specificity</subject><subject>sulfate-reducing bacteria</subject><subject>Sulfates</subject><subject>sulfur</subject><subject>transposons</subject><subject>United States</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcuP0zAQhy0EYrsLZ05ApL1wye6MH4l9WQlVvKRFHGDPluPYraskLnaCxH-Pq5byOM1hvvlmRj9CXiDcILTsdj-ZfIMMqaAcER6RFYLCuuEKHpMVAG1rySm_IJc57wBACQlPyQVlUklUYkXWn91sujgEW03Bbl0VfWWqfYpjmNw0V3kZvJldnVy_2DBtqu0ymqnaLHPVGTu7FJbxGXnizZDd81O9Ig_v331bf6zvv3z4tH57X1uhcK5l13JvnOnLanQdemG96tECSNrLzjXOeSOgUZwy7MCAZ4rRrml73jeoWnZF7o7e_dKNrrflvmQGvU9hNOmnjibofztT2OpN_KFZyxspZBG8OQlS_L64POsxZOuGwUwuLlmjBIbIFfKCXv-H7uKSpvKeRk6FACX5gbo9UjbFnJPz52MQ9CEgfQhI_wmoTLz6-4cz_zuRAlQn4DB51hUfY0UkJC3IyyOyy3NMZ4bTFqkShx2vj31vojabFLJ--EoBGwDkyBrBfgHhX6mj</recordid><startdate>20130813</startdate><enddate>20130813</enddate><creator>Rey, Federico E.</creator><creator>Gonzalez, Mark D.</creator><creator>Cheng, Jiye</creator><creator>Wu, Meng</creator><creator>Ahern, Philip P.</creator><creator>Gordon, Jeffrey I.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130813</creationdate><title>Metabolic niche of a prominent sulfate-reducing human gut bacterium</title><author>Rey, Federico E. ; Gonzalez, Mark D. ; Cheng, Jiye ; Wu, Meng ; Ahern, Philip P. ; Gordon, Jeffrey I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-8b74faead9811eb1f5cf9d1c0082d8be6eefa50694231b0a0f3932b67d4d61973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adults</topic><topic>Ammonia</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteroides</topic><topic>Biological Sciences</topic><topic>Bromodeoxyuridine</topic><topic>carbon</topic><topic>chondroitin sulfate</topic><topic>Chondroitin Sulfates - administration & dosage</topic><topic>Chondroitin Sulfates - metabolism</topic><topic>Chondroitin Sulfates - pharmacology</topic><topic>Collinsella aerofaciens</topic><topic>Datasets</topic><topic>Desulfovibrio</topic><topic>Desulfovibrio - drug effects</topic><topic>Desulfovibrio - genetics</topic><topic>Desulfovibrio - growth & development</topic><topic>Desulfovibrio - metabolism</topic><topic>Diet</topic><topic>Dietary Supplements</topic><topic>Digestive system</topic><topic>DNA Primers - genetics</topic><topic>DNA Transposable Elements - genetics</topic><topic>environmental factors</topic><topic>Feces - microbiology</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Gastrointestinal Tract - microbiology</topic><topic>genes</topic><topic>Genetic Vectors - genetics</topic><topic>Genomes</topic><topic>Gnotobiotics</topic><topic>Humans</topic><topic>Hydrogen</topic><topic>hydrogen sulfide</topic><topic>Hydrogen Sulfide - metabolism</topic><topic>ingredients</topic><topic>intestinal microorganisms</topic><topic>Mass Spectrometry</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Microbiota</topic><topic>Mutagenesis</topic><topic>Polysaccharides</topic><topic>Sequence Analysis, DNA</topic><topic>Species Specificity</topic><topic>sulfate-reducing bacteria</topic><topic>Sulfates</topic><topic>sulfur</topic><topic>transposons</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rey, Federico E.</creatorcontrib><creatorcontrib>Gonzalez, Mark D.</creatorcontrib><creatorcontrib>Cheng, Jiye</creatorcontrib><creatorcontrib>Wu, Meng</creatorcontrib><creatorcontrib>Ahern, Philip P.</creatorcontrib><creatorcontrib>Gordon, Jeffrey I.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rey, Federico E.</au><au>Gonzalez, Mark D.</au><au>Cheng, Jiye</au><au>Wu, Meng</au><au>Ahern, Philip P.</au><au>Gordon, Jeffrey I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic niche of a prominent sulfate-reducing human gut bacterium</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-08-13</date><risdate>2013</risdate><volume>110</volume><issue>33</issue><spage>13582</spage><epage>13587</epage><pages>13582-13587</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Sulfate-reducing bacteria (SRB) colonize the guts of ∼50% of humans. We used genome-wide transposon mutagenesis and insertion-site sequencing, RNA-Seq, plus mass spectrometry to characterize genetic and environmental factors that impact the niche of Desulfovibrio piger , the most common SRB in a surveyed cohort of healthy US adults. Gnotobiotic mice were colonized with an assemblage of sequenced human gut bacterial species with or without D. piger and fed diets with different levels and types of carbohydrates and sulfur sources. Diet was a major determinant of functions expressed by this artificial nine-member community and of the genes that impact D. piger fitness; the latter includes high- and low-affinity systems for using ammonia, a limiting resource for D. piger in mice consuming a polysaccharide-rich diet. Although genes involved in hydrogen consumption and sulfate reduction are necessary for its colonization, varying dietary-free sulfate levels did not significantly alter levels of D. piger , which can obtain sulfate from the host in part via cross-feeding mediated by Bacteroides -encoded sulfatases. Chondroitin sulfate, a common dietary supplement, increased D. piger and H ₂S levels without compromising gut barrier integrity. A chondroitin sulfate-supplemented diet together with D. piger impacted the assemblage’s substrate utilization preferences, allowing consumption of more reduced carbon sources and increasing the abundance of the H ₂-producing Actinobacterium, Collinsella aerofaciens . Our findings provide genetic and metabolic details of how this H ₂-consuming SRB shapes the responses of a microbiota to diet ingredients and a framework for examining how individuals lacking D. piger differ from those who harbor it.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23898195</pmid><doi>10.1073/pnas.1312524110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (33), p.13582-13587 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1803114914 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | adults Ammonia Animals Bacteria Bacteroides Biological Sciences Bromodeoxyuridine carbon chondroitin sulfate Chondroitin Sulfates - administration & dosage Chondroitin Sulfates - metabolism Chondroitin Sulfates - pharmacology Collinsella aerofaciens Datasets Desulfovibrio Desulfovibrio - drug effects Desulfovibrio - genetics Desulfovibrio - growth & development Desulfovibrio - metabolism Diet Dietary Supplements Digestive system DNA Primers - genetics DNA Transposable Elements - genetics environmental factors Feces - microbiology Gas Chromatography-Mass Spectrometry Gastrointestinal Tract - microbiology genes Genetic Vectors - genetics Genomes Gnotobiotics Humans Hydrogen hydrogen sulfide Hydrogen Sulfide - metabolism ingredients intestinal microorganisms Mass Spectrometry Metabolism Mice Microbiota Mutagenesis Polysaccharides Sequence Analysis, DNA Species Specificity sulfate-reducing bacteria Sulfates sulfur transposons United States |
title | Metabolic niche of a prominent sulfate-reducing human gut bacterium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20niche%20of%20a%20prominent%20sulfate-reducing%20human%20gut%20bacterium&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rey,%20Federico%20E.&rft.date=2013-08-13&rft.volume=110&rft.issue=33&rft.spage=13582&rft.epage=13587&rft.pages=13582-13587&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1312524110&rft_dat=%3Cjstor_proqu%3E42712950%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1425509844&rft_id=info:pmid/23898195&rft_jstor_id=42712950&rfr_iscdi=true |