Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3

Tumor heterogeneity of high-grade glioma (HGG) is recognized by four clinically relevant subtypes based on core gene signatures. However, molecular signaling in glioma stem cells (GSCs) in individual HGG subtypes is poorly characterized. Here we identified and characterized two mutually exclusive GS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-05, Vol.110 (21), p.8644-8649
Hauptverfasser: Mao, Ping, Joshi, Kaushal, Li, Jianfeng, Kim, Sung-Hak, Li, Peipei, Santana-Santos, Lucas, Luthra, Soumya, Chandran, Uma R., Benos, Panayiotis V., Smith, Luke, Wang, Maode, Hu, Bo, Cheng, Shi-Yuan, Sobol, Robert W., Nakano, Ichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8649
container_issue 21
container_start_page 8644
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Mao, Ping
Joshi, Kaushal
Li, Jianfeng
Kim, Sung-Hak
Li, Peipei
Santana-Santos, Lucas
Luthra, Soumya
Chandran, Uma R.
Benos, Panayiotis V.
Smith, Luke
Wang, Maode
Hu, Bo
Cheng, Shi-Yuan
Sobol, Robert W.
Nakano, Ichiro
description Tumor heterogeneity of high-grade glioma (HGG) is recognized by four clinically relevant subtypes based on core gene signatures. However, molecular signaling in glioma stem cells (GSCs) in individual HGG subtypes is poorly characterized. Here we identified and characterized two mutually exclusive GSC subtypes with distinct dysregulated signaling pathways. Analysis of mRNA profiles distinguished proneural (PN) from mesenchymal (Mes) GSCs and revealed a pronounced correlation with the corresponding PN or Mes HGGs. Mes GSCs displayed more aggressive phenotypes in vitro and as intracranial xenografts in mice. Further, Mes GSCs were markedly resistant to radiation compared with PN GSCs. The glycolytic pathway, comprising aldehyde dehydrogenase (ALDH) family genes and in particular ALDH1A3, were enriched in Mes GSCs. Glycolytic activity and ALDH activity were significantly elevated in Mes GSCs but not in PN GSCs. Expression of ALDH1A3 was also increased in clinical HGG compared with low-grade glioma or normal brain tissue. Moreover, inhibition of ALDH1A3 attenuated the growth of Mes but not PN GSCs. Last, radiation treatment of PN GSCs up-regulated Mes-associated markers and down-regulated PN-associated markers, whereas inhibition of ALDH1A3 attenuated an irradiation-induced gain of Mes identity in PN GSCs. Taken together, our data suggest that two subtypes of GSCs, harboring distinct metabolic signaling pathways, represent intertumoral glioma heterogeneity and highlight previously unidentified roles of ALDH1A3-associated signaling that promotes aberrant proliferation of Mes HGGs and GSCs. Inhibition of ALDH1A3-mediated pathways therefore might provide a promising therapeutic approach for a subset of HGGs with the Mes signature.
doi_str_mv 10.1073/pnas.1221478110
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803107252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42656776</jstor_id><sourcerecordid>42656776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-796ae07ec89c3e61ff30931c683db21022944c93978cfc46cdab1a0ef782d65f3</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhlcIREPhzAmwxIVL2vHH2utLpaqiBamIA_RsOV7vxpF3HWwn0v57vCSkwImDNbL8zKPxvFX1GsMFBkEvt6NOF5gQzESDMTypFhgkXnIm4Wm1ACBi2TDCzqoXKW0AQNYNPK_OCOU1UIkXVf5ikx3Nehq0R713YdAoZTsgY71PSEeLBu3GXI5t0WpC2mS317lcej-Z4KfsDBps1qvgXRqQG_fB793YI-1bu55ai36VGHpbhrUIX9OX1bNO-2RfHet59XD78fvNp-X917vPN9f3S1NLyEshubYgrGmkoZbjrqMgKTa8oe2KYCBEMmYklaIxnWHctHqFNdhONKTldUfPq6uDd7tbDbY1dsxRe7WNbtBxUkE79ffL6NaqD3tFOeeCkiL4cBTE8GNnU1aDS_Nm9GjDLincAC05kPo_UFozISljvKDv_0E3YRfHsomZ4kC4kLhQlwfKxJBStN1pbgxqDl_N4avH8EvH2z-_e-J_p12Ad0dg7jzpio9g1XDGCvHmQGxSDvGEMMJrLgR_NHQ6KN1Hl9TDNwKYA2DaAFD6E3koyY0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1356026791</pqid></control><display><type>article</type><title>Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mao, Ping ; Joshi, Kaushal ; Li, Jianfeng ; Kim, Sung-Hak ; Li, Peipei ; Santana-Santos, Lucas ; Luthra, Soumya ; Chandran, Uma R. ; Benos, Panayiotis V. ; Smith, Luke ; Wang, Maode ; Hu, Bo ; Cheng, Shi-Yuan ; Sobol, Robert W. ; Nakano, Ichiro</creator><creatorcontrib>Mao, Ping ; Joshi, Kaushal ; Li, Jianfeng ; Kim, Sung-Hak ; Li, Peipei ; Santana-Santos, Lucas ; Luthra, Soumya ; Chandran, Uma R. ; Benos, Panayiotis V. ; Smith, Luke ; Wang, Maode ; Hu, Bo ; Cheng, Shi-Yuan ; Sobol, Robert W. ; Nakano, Ichiro</creatorcontrib><description>Tumor heterogeneity of high-grade glioma (HGG) is recognized by four clinically relevant subtypes based on core gene signatures. However, molecular signaling in glioma stem cells (GSCs) in individual HGG subtypes is poorly characterized. Here we identified and characterized two mutually exclusive GSC subtypes with distinct dysregulated signaling pathways. Analysis of mRNA profiles distinguished proneural (PN) from mesenchymal (Mes) GSCs and revealed a pronounced correlation with the corresponding PN or Mes HGGs. Mes GSCs displayed more aggressive phenotypes in vitro and as intracranial xenografts in mice. Further, Mes GSCs were markedly resistant to radiation compared with PN GSCs. The glycolytic pathway, comprising aldehyde dehydrogenase (ALDH) family genes and in particular ALDH1A3, were enriched in Mes GSCs. Glycolytic activity and ALDH activity were significantly elevated in Mes GSCs but not in PN GSCs. Expression of ALDH1A3 was also increased in clinical HGG compared with low-grade glioma or normal brain tissue. Moreover, inhibition of ALDH1A3 attenuated the growth of Mes but not PN GSCs. Last, radiation treatment of PN GSCs up-regulated Mes-associated markers and down-regulated PN-associated markers, whereas inhibition of ALDH1A3 attenuated an irradiation-induced gain of Mes identity in PN GSCs. Taken together, our data suggest that two subtypes of GSCs, harboring distinct metabolic signaling pathways, represent intertumoral glioma heterogeneity and highlight previously unidentified roles of ALDH1A3-associated signaling that promotes aberrant proliferation of Mes HGGs and GSCs. Inhibition of ALDH1A3-mediated pathways therefore might provide a promising therapeutic approach for a subset of HGGs with the Mes signature.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1221478110</identifier><identifier>PMID: 23650391</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>aldehyde dehydrogenase ; Aldehyde Dehydrogenase - biosynthesis ; Aldehyde Dehydrogenase - genetics ; Aldehyde Oxidoreductases ; Aldehydes ; Animals ; Biological Sciences ; brain ; Brain neoplasms ; Cancer ; Cell lines ; Cell Proliferation ; Dehydrogenases ; Enzymes ; Female ; Gene Expression Regulation, Enzymologic - genetics ; Gene Expression Regulation, Neoplastic - genetics ; Genes ; Genotype &amp; phenotype ; Glioblastoma ; Glioma ; Glioma - enzymology ; Glioma - pathology ; Glycolysis ; Humans ; Male ; Mesenchymal Stromal Cells - enzymology ; Mesenchymal Stromal Cells - pathology ; messenger RNA ; Metabolism ; Mice ; Neoplasm Proteins - biosynthesis ; Neoplasm Proteins - genetics ; Neoplasm Transplantation ; Neoplastic Stem Cells - enzymology ; Neoplastic Stem Cells - pathology ; phenotype ; Phenotypes ; Rodents ; Signal Transduction ; Stem cells ; Transplantation, Heterologous ; Tumor Cells, Cultured ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (21), p.8644-8649</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 21, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-796ae07ec89c3e61ff30931c683db21022944c93978cfc46cdab1a0ef782d65f3</citedby><cites>FETCH-LOGICAL-c590t-796ae07ec89c3e61ff30931c683db21022944c93978cfc46cdab1a0ef782d65f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42656776$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42656776$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23650391$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Ping</creatorcontrib><creatorcontrib>Joshi, Kaushal</creatorcontrib><creatorcontrib>Li, Jianfeng</creatorcontrib><creatorcontrib>Kim, Sung-Hak</creatorcontrib><creatorcontrib>Li, Peipei</creatorcontrib><creatorcontrib>Santana-Santos, Lucas</creatorcontrib><creatorcontrib>Luthra, Soumya</creatorcontrib><creatorcontrib>Chandran, Uma R.</creatorcontrib><creatorcontrib>Benos, Panayiotis V.</creatorcontrib><creatorcontrib>Smith, Luke</creatorcontrib><creatorcontrib>Wang, Maode</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><creatorcontrib>Cheng, Shi-Yuan</creatorcontrib><creatorcontrib>Sobol, Robert W.</creatorcontrib><creatorcontrib>Nakano, Ichiro</creatorcontrib><title>Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tumor heterogeneity of high-grade glioma (HGG) is recognized by four clinically relevant subtypes based on core gene signatures. However, molecular signaling in glioma stem cells (GSCs) in individual HGG subtypes is poorly characterized. Here we identified and characterized two mutually exclusive GSC subtypes with distinct dysregulated signaling pathways. Analysis of mRNA profiles distinguished proneural (PN) from mesenchymal (Mes) GSCs and revealed a pronounced correlation with the corresponding PN or Mes HGGs. Mes GSCs displayed more aggressive phenotypes in vitro and as intracranial xenografts in mice. Further, Mes GSCs were markedly resistant to radiation compared with PN GSCs. The glycolytic pathway, comprising aldehyde dehydrogenase (ALDH) family genes and in particular ALDH1A3, were enriched in Mes GSCs. Glycolytic activity and ALDH activity were significantly elevated in Mes GSCs but not in PN GSCs. Expression of ALDH1A3 was also increased in clinical HGG compared with low-grade glioma or normal brain tissue. Moreover, inhibition of ALDH1A3 attenuated the growth of Mes but not PN GSCs. Last, radiation treatment of PN GSCs up-regulated Mes-associated markers and down-regulated PN-associated markers, whereas inhibition of ALDH1A3 attenuated an irradiation-induced gain of Mes identity in PN GSCs. Taken together, our data suggest that two subtypes of GSCs, harboring distinct metabolic signaling pathways, represent intertumoral glioma heterogeneity and highlight previously unidentified roles of ALDH1A3-associated signaling that promotes aberrant proliferation of Mes HGGs and GSCs. Inhibition of ALDH1A3-mediated pathways therefore might provide a promising therapeutic approach for a subset of HGGs with the Mes signature.</description><subject>aldehyde dehydrogenase</subject><subject>Aldehyde Dehydrogenase - biosynthesis</subject><subject>Aldehyde Dehydrogenase - genetics</subject><subject>Aldehyde Oxidoreductases</subject><subject>Aldehydes</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>brain</subject><subject>Brain neoplasms</subject><subject>Cancer</subject><subject>Cell lines</subject><subject>Cell Proliferation</subject><subject>Dehydrogenases</subject><subject>Enzymes</subject><subject>Female</subject><subject>Gene Expression Regulation, Enzymologic - genetics</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Genes</subject><subject>Genotype &amp; phenotype</subject><subject>Glioblastoma</subject><subject>Glioma</subject><subject>Glioma - enzymology</subject><subject>Glioma - pathology</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Male</subject><subject>Mesenchymal Stromal Cells - enzymology</subject><subject>Mesenchymal Stromal Cells - pathology</subject><subject>messenger RNA</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Neoplasm Proteins - biosynthesis</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Transplantation</subject><subject>Neoplastic Stem Cells - enzymology</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>phenotype</subject><subject>Phenotypes</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Stem cells</subject><subject>Transplantation, Heterologous</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1vEzEQhlcIREPhzAmwxIVL2vHH2utLpaqiBamIA_RsOV7vxpF3HWwn0v57vCSkwImDNbL8zKPxvFX1GsMFBkEvt6NOF5gQzESDMTypFhgkXnIm4Wm1ACBi2TDCzqoXKW0AQNYNPK_OCOU1UIkXVf5ikx3Nehq0R713YdAoZTsgY71PSEeLBu3GXI5t0WpC2mS317lcej-Z4KfsDBps1qvgXRqQG_fB793YI-1bu55ai36VGHpbhrUIX9OX1bNO-2RfHet59XD78fvNp-X917vPN9f3S1NLyEshubYgrGmkoZbjrqMgKTa8oe2KYCBEMmYklaIxnWHctHqFNdhONKTldUfPq6uDd7tbDbY1dsxRe7WNbtBxUkE79ffL6NaqD3tFOeeCkiL4cBTE8GNnU1aDS_Nm9GjDLincAC05kPo_UFozISljvKDv_0E3YRfHsomZ4kC4kLhQlwfKxJBStN1pbgxqDl_N4avH8EvH2z-_e-J_p12Ad0dg7jzpio9g1XDGCvHmQGxSDvGEMMJrLgR_NHQ6KN1Hl9TDNwKYA2DaAFD6E3koyY0</recordid><startdate>20130521</startdate><enddate>20130521</enddate><creator>Mao, Ping</creator><creator>Joshi, Kaushal</creator><creator>Li, Jianfeng</creator><creator>Kim, Sung-Hak</creator><creator>Li, Peipei</creator><creator>Santana-Santos, Lucas</creator><creator>Luthra, Soumya</creator><creator>Chandran, Uma R.</creator><creator>Benos, Panayiotis V.</creator><creator>Smith, Luke</creator><creator>Wang, Maode</creator><creator>Hu, Bo</creator><creator>Cheng, Shi-Yuan</creator><creator>Sobol, Robert W.</creator><creator>Nakano, Ichiro</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130521</creationdate><title>Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3</title><author>Mao, Ping ; Joshi, Kaushal ; Li, Jianfeng ; Kim, Sung-Hak ; Li, Peipei ; Santana-Santos, Lucas ; Luthra, Soumya ; Chandran, Uma R. ; Benos, Panayiotis V. ; Smith, Luke ; Wang, Maode ; Hu, Bo ; Cheng, Shi-Yuan ; Sobol, Robert W. ; Nakano, Ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-796ae07ec89c3e61ff30931c683db21022944c93978cfc46cdab1a0ef782d65f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>aldehyde dehydrogenase</topic><topic>Aldehyde Dehydrogenase - biosynthesis</topic><topic>Aldehyde Dehydrogenase - genetics</topic><topic>Aldehyde Oxidoreductases</topic><topic>Aldehydes</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>brain</topic><topic>Brain neoplasms</topic><topic>Cancer</topic><topic>Cell lines</topic><topic>Cell Proliferation</topic><topic>Dehydrogenases</topic><topic>Enzymes</topic><topic>Female</topic><topic>Gene Expression Regulation, Enzymologic - genetics</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Genes</topic><topic>Genotype &amp; phenotype</topic><topic>Glioblastoma</topic><topic>Glioma</topic><topic>Glioma - enzymology</topic><topic>Glioma - pathology</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Male</topic><topic>Mesenchymal Stromal Cells - enzymology</topic><topic>Mesenchymal Stromal Cells - pathology</topic><topic>messenger RNA</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Neoplasm Proteins - biosynthesis</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Transplantation</topic><topic>Neoplastic Stem Cells - enzymology</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>phenotype</topic><topic>Phenotypes</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Stem cells</topic><topic>Transplantation, Heterologous</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Ping</creatorcontrib><creatorcontrib>Joshi, Kaushal</creatorcontrib><creatorcontrib>Li, Jianfeng</creatorcontrib><creatorcontrib>Kim, Sung-Hak</creatorcontrib><creatorcontrib>Li, Peipei</creatorcontrib><creatorcontrib>Santana-Santos, Lucas</creatorcontrib><creatorcontrib>Luthra, Soumya</creatorcontrib><creatorcontrib>Chandran, Uma R.</creatorcontrib><creatorcontrib>Benos, Panayiotis V.</creatorcontrib><creatorcontrib>Smith, Luke</creatorcontrib><creatorcontrib>Wang, Maode</creatorcontrib><creatorcontrib>Hu, Bo</creatorcontrib><creatorcontrib>Cheng, Shi-Yuan</creatorcontrib><creatorcontrib>Sobol, Robert W.</creatorcontrib><creatorcontrib>Nakano, Ichiro</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Ping</au><au>Joshi, Kaushal</au><au>Li, Jianfeng</au><au>Kim, Sung-Hak</au><au>Li, Peipei</au><au>Santana-Santos, Lucas</au><au>Luthra, Soumya</au><au>Chandran, Uma R.</au><au>Benos, Panayiotis V.</au><au>Smith, Luke</au><au>Wang, Maode</au><au>Hu, Bo</au><au>Cheng, Shi-Yuan</au><au>Sobol, Robert W.</au><au>Nakano, Ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-05-21</date><risdate>2013</risdate><volume>110</volume><issue>21</issue><spage>8644</spage><epage>8649</epage><pages>8644-8649</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tumor heterogeneity of high-grade glioma (HGG) is recognized by four clinically relevant subtypes based on core gene signatures. However, molecular signaling in glioma stem cells (GSCs) in individual HGG subtypes is poorly characterized. Here we identified and characterized two mutually exclusive GSC subtypes with distinct dysregulated signaling pathways. Analysis of mRNA profiles distinguished proneural (PN) from mesenchymal (Mes) GSCs and revealed a pronounced correlation with the corresponding PN or Mes HGGs. Mes GSCs displayed more aggressive phenotypes in vitro and as intracranial xenografts in mice. Further, Mes GSCs were markedly resistant to radiation compared with PN GSCs. The glycolytic pathway, comprising aldehyde dehydrogenase (ALDH) family genes and in particular ALDH1A3, were enriched in Mes GSCs. Glycolytic activity and ALDH activity were significantly elevated in Mes GSCs but not in PN GSCs. Expression of ALDH1A3 was also increased in clinical HGG compared with low-grade glioma or normal brain tissue. Moreover, inhibition of ALDH1A3 attenuated the growth of Mes but not PN GSCs. Last, radiation treatment of PN GSCs up-regulated Mes-associated markers and down-regulated PN-associated markers, whereas inhibition of ALDH1A3 attenuated an irradiation-induced gain of Mes identity in PN GSCs. Taken together, our data suggest that two subtypes of GSCs, harboring distinct metabolic signaling pathways, represent intertumoral glioma heterogeneity and highlight previously unidentified roles of ALDH1A3-associated signaling that promotes aberrant proliferation of Mes HGGs and GSCs. Inhibition of ALDH1A3-mediated pathways therefore might provide a promising therapeutic approach for a subset of HGGs with the Mes signature.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23650391</pmid><doi>10.1073/pnas.1221478110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-05, Vol.110 (21), p.8644-8649
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1803107252
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects aldehyde dehydrogenase
Aldehyde Dehydrogenase - biosynthesis
Aldehyde Dehydrogenase - genetics
Aldehyde Oxidoreductases
Aldehydes
Animals
Biological Sciences
brain
Brain neoplasms
Cancer
Cell lines
Cell Proliferation
Dehydrogenases
Enzymes
Female
Gene Expression Regulation, Enzymologic - genetics
Gene Expression Regulation, Neoplastic - genetics
Genes
Genotype & phenotype
Glioblastoma
Glioma
Glioma - enzymology
Glioma - pathology
Glycolysis
Humans
Male
Mesenchymal Stromal Cells - enzymology
Mesenchymal Stromal Cells - pathology
messenger RNA
Metabolism
Mice
Neoplasm Proteins - biosynthesis
Neoplasm Proteins - genetics
Neoplasm Transplantation
Neoplastic Stem Cells - enzymology
Neoplastic Stem Cells - pathology
phenotype
Phenotypes
Rodents
Signal Transduction
Stem cells
Transplantation, Heterologous
Tumor Cells, Cultured
Tumors
title Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A23%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesenchymal%20glioma%20stem%20cells%20are%20maintained%20by%20activated%20glycolytic%20metabolism%20involving%20aldehyde%20dehydrogenase%201A3&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mao,%20Ping&rft.date=2013-05-21&rft.volume=110&rft.issue=21&rft.spage=8644&rft.epage=8649&rft.pages=8644-8649&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1221478110&rft_dat=%3Cjstor_proqu%3E42656776%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1356026791&rft_id=info:pmid/23650391&rft_jstor_id=42656776&rfr_iscdi=true