Dimers of mitochondrial ATP synthase form the permeability transition pore
Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the F OF ₁ ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (15), p.5887-5892 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5892 |
---|---|
container_issue | 15 |
container_start_page | 5887 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Giorgio, Valentina von Stockum, Sophia Antoniel, Manuela Fabbro, Astrid Fogolari, Federico Forte, Michael Glick, Gary D. Petronilli, Valeria Zoratti, Mario Szabó, Ildikó Lippe, Giovanna Bernardi, Paolo |
description | Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the F OF ₁ ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca ²⁺ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca ²⁺. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca ²⁺, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg ²⁺/ADP. These results indicate that the PTP forms from dimers of the ATP synthase. |
doi_str_mv | 10.1073/pnas.1217823110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803106341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42590324</jstor_id><sourcerecordid>42590324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-bd925a001f7e93e6b18d2b6870b0d44ccc8eb310705780051109a1d40f66d64c3</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi1ERaeFNSvAUjds0l4_42yQqvIoVSWQaNeW4zgdj5I42Bmk-fc4zBAem6688LnH3_WH0EsC5wRKdjEOJp0TSkpFGSHwBK0IVKSQvIKnaAVAy0Jxyo_RSUobAKiEgmfomDLBgHK2Qjfvfe9iwqHFvZ-CXYehid50-PLuK067YVqb5HAbYo-ntcOji70zte_8tMNTNEPykw8DHkN0z9FRa7rkXhzOU3T_8cPd1XVx--XT56vL28KKCqaibioqDABpS1cxJ2uiGlpLVUINDefWWuVqlrcDUSoAkdeqDGk4tFI2klt2it7tveO27l1j3ZCDdHqMvjdxp4Px-t-bwa_1Q_ihmaSCUZYFbw-CGL5vXZp075N1XWcGF7ZJEwX5fck4eRxlVBLOhCwzevYfugnbOOSf-EVxKimoTF3sKRtDStG1S24Ceq5Uz5XqP5Xmidd_r7vwvzvMwJsDME8uutkntFBqjvZqT2zSFOKCcJoLYVmxGFoTtHmIPun7bxSIzC2xHKNkPwFKbLjK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326426208</pqid></control><display><type>article</type><title>Dimers of mitochondrial ATP synthase form the permeability transition pore</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Giorgio, Valentina ; von Stockum, Sophia ; Antoniel, Manuela ; Fabbro, Astrid ; Fogolari, Federico ; Forte, Michael ; Glick, Gary D. ; Petronilli, Valeria ; Zoratti, Mario ; Szabó, Ildikó ; Lippe, Giovanna ; Bernardi, Paolo</creator><creatorcontrib>Giorgio, Valentina ; von Stockum, Sophia ; Antoniel, Manuela ; Fabbro, Astrid ; Fogolari, Federico ; Forte, Michael ; Glick, Gary D. ; Petronilli, Valeria ; Zoratti, Mario ; Szabó, Ildikó ; Lippe, Giovanna ; Bernardi, Paolo</creatorcontrib><description>Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the F OF ₁ ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca ²⁺ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca ²⁺. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca ²⁺, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg ²⁺/ADP. These results indicate that the PTP forms from dimers of the ATP synthase.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1217823110</identifier><identifier>PMID: 23530243</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>adenine ; Adenosine triphosphatase ; adenosine triphosphate ; Animals ; Antibodies ; Apoptosis ; benzodiazepines ; Binding sites ; Biological Sciences ; calcium ; Calcium - metabolism ; Cattle ; Cell death ; Cell Line, Tumor ; cyclophilins ; Dimerization ; Dimers ; Electric current ; electrophysiology ; H+/K+-exchanging ATPase ; H-transporting ATP synthase ; Humans ; Hydrolysis ; Ions ; lipid bilayers ; magnesium ; Membrane Potentials ; Mice ; Mitochondria ; Mitochondria - metabolism ; Mitochondria, Liver - metabolism ; Mitochondrial Membrane Transport Proteins - physiology ; Mitochondrial Proton-Translocating ATPases - metabolism ; Monomers ; oligomycin ; Oligomycins ; Permeability ; Physiological regulation ; protein subunits ; protein synthesis ; Proteins ; Ribonucleic acid ; RNA ; RNA interference ; RNA, Small Interfering - metabolism ; Small interfering RNA ; Transfection</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (15), p.5887-5892</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 9, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-bd925a001f7e93e6b18d2b6870b0d44ccc8eb310705780051109a1d40f66d64c3</citedby><cites>FETCH-LOGICAL-c590t-bd925a001f7e93e6b18d2b6870b0d44ccc8eb310705780051109a1d40f66d64c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42590324$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42590324$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23530243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giorgio, Valentina</creatorcontrib><creatorcontrib>von Stockum, Sophia</creatorcontrib><creatorcontrib>Antoniel, Manuela</creatorcontrib><creatorcontrib>Fabbro, Astrid</creatorcontrib><creatorcontrib>Fogolari, Federico</creatorcontrib><creatorcontrib>Forte, Michael</creatorcontrib><creatorcontrib>Glick, Gary D.</creatorcontrib><creatorcontrib>Petronilli, Valeria</creatorcontrib><creatorcontrib>Zoratti, Mario</creatorcontrib><creatorcontrib>Szabó, Ildikó</creatorcontrib><creatorcontrib>Lippe, Giovanna</creatorcontrib><creatorcontrib>Bernardi, Paolo</creatorcontrib><title>Dimers of mitochondrial ATP synthase form the permeability transition pore</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the F OF ₁ ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca ²⁺ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca ²⁺. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca ²⁺, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg ²⁺/ADP. These results indicate that the PTP forms from dimers of the ATP synthase.</description><subject>adenine</subject><subject>Adenosine triphosphatase</subject><subject>adenosine triphosphate</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>benzodiazepines</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Cattle</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>cyclophilins</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Electric current</subject><subject>electrophysiology</subject><subject>H+/K+-exchanging ATPase</subject><subject>H-transporting ATP synthase</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Ions</subject><subject>lipid bilayers</subject><subject>magnesium</subject><subject>Membrane Potentials</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - physiology</subject><subject>Mitochondrial Proton-Translocating ATPases - metabolism</subject><subject>Monomers</subject><subject>oligomycin</subject><subject>Oligomycins</subject><subject>Permeability</subject><subject>Physiological regulation</subject><subject>protein subunits</subject><subject>protein synthesis</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Small interfering RNA</subject><subject>Transfection</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURi1ERaeFNSvAUjds0l4_42yQqvIoVSWQaNeW4zgdj5I42Bmk-fc4zBAem6688LnH3_WH0EsC5wRKdjEOJp0TSkpFGSHwBK0IVKSQvIKnaAVAy0Jxyo_RSUobAKiEgmfomDLBgHK2Qjfvfe9iwqHFvZ-CXYehid50-PLuK067YVqb5HAbYo-ntcOji70zte_8tMNTNEPykw8DHkN0z9FRa7rkXhzOU3T_8cPd1XVx--XT56vL28KKCqaibioqDABpS1cxJ2uiGlpLVUINDefWWuVqlrcDUSoAkdeqDGk4tFI2klt2it7tveO27l1j3ZCDdHqMvjdxp4Px-t-bwa_1Q_ihmaSCUZYFbw-CGL5vXZp075N1XWcGF7ZJEwX5fck4eRxlVBLOhCwzevYfugnbOOSf-EVxKimoTF3sKRtDStG1S24Ceq5Uz5XqP5Xmidd_r7vwvzvMwJsDME8uutkntFBqjvZqT2zSFOKCcJoLYVmxGFoTtHmIPun7bxSIzC2xHKNkPwFKbLjK</recordid><startdate>20130409</startdate><enddate>20130409</enddate><creator>Giorgio, Valentina</creator><creator>von Stockum, Sophia</creator><creator>Antoniel, Manuela</creator><creator>Fabbro, Astrid</creator><creator>Fogolari, Federico</creator><creator>Forte, Michael</creator><creator>Glick, Gary D.</creator><creator>Petronilli, Valeria</creator><creator>Zoratti, Mario</creator><creator>Szabó, Ildikó</creator><creator>Lippe, Giovanna</creator><creator>Bernardi, Paolo</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130409</creationdate><title>Dimers of mitochondrial ATP synthase form the permeability transition pore</title><author>Giorgio, Valentina ; von Stockum, Sophia ; Antoniel, Manuela ; Fabbro, Astrid ; Fogolari, Federico ; Forte, Michael ; Glick, Gary D. ; Petronilli, Valeria ; Zoratti, Mario ; Szabó, Ildikó ; Lippe, Giovanna ; Bernardi, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-bd925a001f7e93e6b18d2b6870b0d44ccc8eb310705780051109a1d40f66d64c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adenine</topic><topic>Adenosine triphosphatase</topic><topic>adenosine triphosphate</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>benzodiazepines</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Cattle</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>cyclophilins</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Electric current</topic><topic>electrophysiology</topic><topic>H+/K+-exchanging ATPase</topic><topic>H-transporting ATP synthase</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Ions</topic><topic>lipid bilayers</topic><topic>magnesium</topic><topic>Membrane Potentials</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - physiology</topic><topic>Mitochondrial Proton-Translocating ATPases - metabolism</topic><topic>Monomers</topic><topic>oligomycin</topic><topic>Oligomycins</topic><topic>Permeability</topic><topic>Physiological regulation</topic><topic>protein subunits</topic><topic>protein synthesis</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Small interfering RNA</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giorgio, Valentina</creatorcontrib><creatorcontrib>von Stockum, Sophia</creatorcontrib><creatorcontrib>Antoniel, Manuela</creatorcontrib><creatorcontrib>Fabbro, Astrid</creatorcontrib><creatorcontrib>Fogolari, Federico</creatorcontrib><creatorcontrib>Forte, Michael</creatorcontrib><creatorcontrib>Glick, Gary D.</creatorcontrib><creatorcontrib>Petronilli, Valeria</creatorcontrib><creatorcontrib>Zoratti, Mario</creatorcontrib><creatorcontrib>Szabó, Ildikó</creatorcontrib><creatorcontrib>Lippe, Giovanna</creatorcontrib><creatorcontrib>Bernardi, Paolo</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giorgio, Valentina</au><au>von Stockum, Sophia</au><au>Antoniel, Manuela</au><au>Fabbro, Astrid</au><au>Fogolari, Federico</au><au>Forte, Michael</au><au>Glick, Gary D.</au><au>Petronilli, Valeria</au><au>Zoratti, Mario</au><au>Szabó, Ildikó</au><au>Lippe, Giovanna</au><au>Bernardi, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimers of mitochondrial ATP synthase form the permeability transition pore</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-04-09</date><risdate>2013</risdate><volume>110</volume><issue>15</issue><spage>5887</spage><epage>5892</epage><pages>5887-5892</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the F OF ₁ ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca ²⁺ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca ²⁺. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca ²⁺, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg ²⁺/ADP. These results indicate that the PTP forms from dimers of the ATP synthase.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23530243</pmid><doi>10.1073/pnas.1217823110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (15), p.5887-5892 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1803106341 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | adenine Adenosine triphosphatase adenosine triphosphate Animals Antibodies Apoptosis benzodiazepines Binding sites Biological Sciences calcium Calcium - metabolism Cattle Cell death Cell Line, Tumor cyclophilins Dimerization Dimers Electric current electrophysiology H+/K+-exchanging ATPase H-transporting ATP synthase Humans Hydrolysis Ions lipid bilayers magnesium Membrane Potentials Mice Mitochondria Mitochondria - metabolism Mitochondria, Liver - metabolism Mitochondrial Membrane Transport Proteins - physiology Mitochondrial Proton-Translocating ATPases - metabolism Monomers oligomycin Oligomycins Permeability Physiological regulation protein subunits protein synthesis Proteins Ribonucleic acid RNA RNA interference RNA, Small Interfering - metabolism Small interfering RNA Transfection |
title | Dimers of mitochondrial ATP synthase form the permeability transition pore |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimers%20of%20mitochondrial%20ATP%20synthase%20form%20the%20permeability%20transition%20pore&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Giorgio,%20Valentina&rft.date=2013-04-09&rft.volume=110&rft.issue=15&rft.spage=5887&rft.epage=5892&rft.pages=5887-5892&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1217823110&rft_dat=%3Cjstor_proqu%3E42590324%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326426208&rft_id=info:pmid/23530243&rft_jstor_id=42590324&rfr_iscdi=true |