Dimers of mitochondrial ATP synthase form the permeability transition pore

Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the F OF ₁ ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-04, Vol.110 (15), p.5887-5892
Hauptverfasser: Giorgio, Valentina, von Stockum, Sophia, Antoniel, Manuela, Fabbro, Astrid, Fogolari, Federico, Forte, Michael, Glick, Gary D., Petronilli, Valeria, Zoratti, Mario, Szabó, Ildikó, Lippe, Giovanna, Bernardi, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5892
container_issue 15
container_start_page 5887
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Giorgio, Valentina
von Stockum, Sophia
Antoniel, Manuela
Fabbro, Astrid
Fogolari, Federico
Forte, Michael
Glick, Gary D.
Petronilli, Valeria
Zoratti, Mario
Szabó, Ildikó
Lippe, Giovanna
Bernardi, Paolo
description Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the F OF ₁ ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca ²⁺ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca ²⁺. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca ²⁺, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg ²⁺/ADP. These results indicate that the PTP forms from dimers of the ATP synthase.
doi_str_mv 10.1073/pnas.1217823110
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803106341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42590324</jstor_id><sourcerecordid>42590324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-bd925a001f7e93e6b18d2b6870b0d44ccc8eb310705780051109a1d40f66d64c3</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi1ERaeFNSvAUjds0l4_42yQqvIoVSWQaNeW4zgdj5I42Bmk-fc4zBAem6688LnH3_WH0EsC5wRKdjEOJp0TSkpFGSHwBK0IVKSQvIKnaAVAy0Jxyo_RSUobAKiEgmfomDLBgHK2Qjfvfe9iwqHFvZ-CXYehid50-PLuK067YVqb5HAbYo-ntcOji70zte_8tMNTNEPykw8DHkN0z9FRa7rkXhzOU3T_8cPd1XVx--XT56vL28KKCqaibioqDABpS1cxJ2uiGlpLVUINDefWWuVqlrcDUSoAkdeqDGk4tFI2klt2it7tveO27l1j3ZCDdHqMvjdxp4Px-t-bwa_1Q_ihmaSCUZYFbw-CGL5vXZp075N1XWcGF7ZJEwX5fck4eRxlVBLOhCwzevYfugnbOOSf-EVxKimoTF3sKRtDStG1S24Ceq5Uz5XqP5Xmidd_r7vwvzvMwJsDME8uutkntFBqjvZqT2zSFOKCcJoLYVmxGFoTtHmIPun7bxSIzC2xHKNkPwFKbLjK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326426208</pqid></control><display><type>article</type><title>Dimers of mitochondrial ATP synthase form the permeability transition pore</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Giorgio, Valentina ; von Stockum, Sophia ; Antoniel, Manuela ; Fabbro, Astrid ; Fogolari, Federico ; Forte, Michael ; Glick, Gary D. ; Petronilli, Valeria ; Zoratti, Mario ; Szabó, Ildikó ; Lippe, Giovanna ; Bernardi, Paolo</creator><creatorcontrib>Giorgio, Valentina ; von Stockum, Sophia ; Antoniel, Manuela ; Fabbro, Astrid ; Fogolari, Federico ; Forte, Michael ; Glick, Gary D. ; Petronilli, Valeria ; Zoratti, Mario ; Szabó, Ildikó ; Lippe, Giovanna ; Bernardi, Paolo</creatorcontrib><description>Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the F OF ₁ ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca ²⁺ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca ²⁺. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca ²⁺, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg ²⁺/ADP. These results indicate that the PTP forms from dimers of the ATP synthase.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1217823110</identifier><identifier>PMID: 23530243</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>adenine ; Adenosine triphosphatase ; adenosine triphosphate ; Animals ; Antibodies ; Apoptosis ; benzodiazepines ; Binding sites ; Biological Sciences ; calcium ; Calcium - metabolism ; Cattle ; Cell death ; Cell Line, Tumor ; cyclophilins ; Dimerization ; Dimers ; Electric current ; electrophysiology ; H+/K+-exchanging ATPase ; H-transporting ATP synthase ; Humans ; Hydrolysis ; Ions ; lipid bilayers ; magnesium ; Membrane Potentials ; Mice ; Mitochondria ; Mitochondria - metabolism ; Mitochondria, Liver - metabolism ; Mitochondrial Membrane Transport Proteins - physiology ; Mitochondrial Proton-Translocating ATPases - metabolism ; Monomers ; oligomycin ; Oligomycins ; Permeability ; Physiological regulation ; protein subunits ; protein synthesis ; Proteins ; Ribonucleic acid ; RNA ; RNA interference ; RNA, Small Interfering - metabolism ; Small interfering RNA ; Transfection</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (15), p.5887-5892</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 9, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-bd925a001f7e93e6b18d2b6870b0d44ccc8eb310705780051109a1d40f66d64c3</citedby><cites>FETCH-LOGICAL-c590t-bd925a001f7e93e6b18d2b6870b0d44ccc8eb310705780051109a1d40f66d64c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42590324$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42590324$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23530243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giorgio, Valentina</creatorcontrib><creatorcontrib>von Stockum, Sophia</creatorcontrib><creatorcontrib>Antoniel, Manuela</creatorcontrib><creatorcontrib>Fabbro, Astrid</creatorcontrib><creatorcontrib>Fogolari, Federico</creatorcontrib><creatorcontrib>Forte, Michael</creatorcontrib><creatorcontrib>Glick, Gary D.</creatorcontrib><creatorcontrib>Petronilli, Valeria</creatorcontrib><creatorcontrib>Zoratti, Mario</creatorcontrib><creatorcontrib>Szabó, Ildikó</creatorcontrib><creatorcontrib>Lippe, Giovanna</creatorcontrib><creatorcontrib>Bernardi, Paolo</creatorcontrib><title>Dimers of mitochondrial ATP synthase form the permeability transition pore</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the F OF ₁ ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca ²⁺ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca ²⁺. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca ²⁺, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg ²⁺/ADP. These results indicate that the PTP forms from dimers of the ATP synthase.</description><subject>adenine</subject><subject>Adenosine triphosphatase</subject><subject>adenosine triphosphate</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Apoptosis</subject><subject>benzodiazepines</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Cattle</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>cyclophilins</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>Electric current</subject><subject>electrophysiology</subject><subject>H+/K+-exchanging ATPase</subject><subject>H-transporting ATP synthase</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Ions</subject><subject>lipid bilayers</subject><subject>magnesium</subject><subject>Membrane Potentials</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria, Liver - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - physiology</subject><subject>Mitochondrial Proton-Translocating ATPases - metabolism</subject><subject>Monomers</subject><subject>oligomycin</subject><subject>Oligomycins</subject><subject>Permeability</subject><subject>Physiological regulation</subject><subject>protein subunits</subject><subject>protein synthesis</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Small interfering RNA</subject><subject>Transfection</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURi1ERaeFNSvAUjds0l4_42yQqvIoVSWQaNeW4zgdj5I42Bmk-fc4zBAem6688LnH3_WH0EsC5wRKdjEOJp0TSkpFGSHwBK0IVKSQvIKnaAVAy0Jxyo_RSUobAKiEgmfomDLBgHK2Qjfvfe9iwqHFvZ-CXYehid50-PLuK067YVqb5HAbYo-ntcOji70zte_8tMNTNEPykw8DHkN0z9FRa7rkXhzOU3T_8cPd1XVx--XT56vL28KKCqaibioqDABpS1cxJ2uiGlpLVUINDefWWuVqlrcDUSoAkdeqDGk4tFI2klt2it7tveO27l1j3ZCDdHqMvjdxp4Px-t-bwa_1Q_ihmaSCUZYFbw-CGL5vXZp075N1XWcGF7ZJEwX5fck4eRxlVBLOhCwzevYfugnbOOSf-EVxKimoTF3sKRtDStG1S24Ceq5Uz5XqP5Xmidd_r7vwvzvMwJsDME8uutkntFBqjvZqT2zSFOKCcJoLYVmxGFoTtHmIPun7bxSIzC2xHKNkPwFKbLjK</recordid><startdate>20130409</startdate><enddate>20130409</enddate><creator>Giorgio, Valentina</creator><creator>von Stockum, Sophia</creator><creator>Antoniel, Manuela</creator><creator>Fabbro, Astrid</creator><creator>Fogolari, Federico</creator><creator>Forte, Michael</creator><creator>Glick, Gary D.</creator><creator>Petronilli, Valeria</creator><creator>Zoratti, Mario</creator><creator>Szabó, Ildikó</creator><creator>Lippe, Giovanna</creator><creator>Bernardi, Paolo</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130409</creationdate><title>Dimers of mitochondrial ATP synthase form the permeability transition pore</title><author>Giorgio, Valentina ; von Stockum, Sophia ; Antoniel, Manuela ; Fabbro, Astrid ; Fogolari, Federico ; Forte, Michael ; Glick, Gary D. ; Petronilli, Valeria ; Zoratti, Mario ; Szabó, Ildikó ; Lippe, Giovanna ; Bernardi, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-bd925a001f7e93e6b18d2b6870b0d44ccc8eb310705780051109a1d40f66d64c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adenine</topic><topic>Adenosine triphosphatase</topic><topic>adenosine triphosphate</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Apoptosis</topic><topic>benzodiazepines</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Cattle</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>cyclophilins</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>Electric current</topic><topic>electrophysiology</topic><topic>H+/K+-exchanging ATPase</topic><topic>H-transporting ATP synthase</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Ions</topic><topic>lipid bilayers</topic><topic>magnesium</topic><topic>Membrane Potentials</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria, Liver - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - physiology</topic><topic>Mitochondrial Proton-Translocating ATPases - metabolism</topic><topic>Monomers</topic><topic>oligomycin</topic><topic>Oligomycins</topic><topic>Permeability</topic><topic>Physiological regulation</topic><topic>protein subunits</topic><topic>protein synthesis</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Small interfering RNA</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giorgio, Valentina</creatorcontrib><creatorcontrib>von Stockum, Sophia</creatorcontrib><creatorcontrib>Antoniel, Manuela</creatorcontrib><creatorcontrib>Fabbro, Astrid</creatorcontrib><creatorcontrib>Fogolari, Federico</creatorcontrib><creatorcontrib>Forte, Michael</creatorcontrib><creatorcontrib>Glick, Gary D.</creatorcontrib><creatorcontrib>Petronilli, Valeria</creatorcontrib><creatorcontrib>Zoratti, Mario</creatorcontrib><creatorcontrib>Szabó, Ildikó</creatorcontrib><creatorcontrib>Lippe, Giovanna</creatorcontrib><creatorcontrib>Bernardi, Paolo</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giorgio, Valentina</au><au>von Stockum, Sophia</au><au>Antoniel, Manuela</au><au>Fabbro, Astrid</au><au>Fogolari, Federico</au><au>Forte, Michael</au><au>Glick, Gary D.</au><au>Petronilli, Valeria</au><au>Zoratti, Mario</au><au>Szabó, Ildikó</au><au>Lippe, Giovanna</au><au>Bernardi, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimers of mitochondrial ATP synthase form the permeability transition pore</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-04-09</date><risdate>2013</risdate><volume>110</volume><issue>15</issue><spage>5887</spage><epage>5892</epage><pages>5887-5892</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the F OF ₁ ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca ²⁺ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca ²⁺. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca ²⁺, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (γ-imino ATP, a nonhydrolyzable ATP analog) and Mg ²⁺/ADP. These results indicate that the PTP forms from dimers of the ATP synthase.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23530243</pmid><doi>10.1073/pnas.1217823110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-04, Vol.110 (15), p.5887-5892
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1803106341
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects adenine
Adenosine triphosphatase
adenosine triphosphate
Animals
Antibodies
Apoptosis
benzodiazepines
Binding sites
Biological Sciences
calcium
Calcium - metabolism
Cattle
Cell death
Cell Line, Tumor
cyclophilins
Dimerization
Dimers
Electric current
electrophysiology
H+/K+-exchanging ATPase
H-transporting ATP synthase
Humans
Hydrolysis
Ions
lipid bilayers
magnesium
Membrane Potentials
Mice
Mitochondria
Mitochondria - metabolism
Mitochondria, Liver - metabolism
Mitochondrial Membrane Transport Proteins - physiology
Mitochondrial Proton-Translocating ATPases - metabolism
Monomers
oligomycin
Oligomycins
Permeability
Physiological regulation
protein subunits
protein synthesis
Proteins
Ribonucleic acid
RNA
RNA interference
RNA, Small Interfering - metabolism
Small interfering RNA
Transfection
title Dimers of mitochondrial ATP synthase form the permeability transition pore
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimers%20of%20mitochondrial%20ATP%20synthase%20form%20the%20permeability%20transition%20pore&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Giorgio,%20Valentina&rft.date=2013-04-09&rft.volume=110&rft.issue=15&rft.spage=5887&rft.epage=5892&rft.pages=5887-5892&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1217823110&rft_dat=%3Cjstor_proqu%3E42590324%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326426208&rft_id=info:pmid/23530243&rft_jstor_id=42590324&rfr_iscdi=true