Mesoscale molecular network formation in amorphous organic materials

High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences 2014-07, Vol.111 (28), p.10055-10060
Hauptverfasser: Savoie, Brett M., Kohlstedt, Kevin L., Jackson, Nicholas E., Chen, Lin X., de la Cruz, Monica Olvera, Schatz, George C., Marks, Tobin J., Ratner, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10060
container_issue 28
container_start_page 10055
container_title Proceedings of the National Academy of Sciences
container_volume 111
creator Savoie, Brett M.
Kohlstedt, Kevin L.
Jackson, Nicholas E.
Chen, Lin X.
de la Cruz, Monica Olvera
Schatz, George C.
Marks, Tobin J.
Ratner, Mark A.
description High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks, even in the absence of periodic order. The hierarchical network structures of two families of important organic photovoltaic acceptors, functionalized fullerenes and perylene diimides, are analyzed using a newly developed graph methodology. The results establish a connection between network robustness and molecular topology, and also demonstrate that solubilizing moieties play a large role in disrupting the molecular networks responsible for charge transport. A clear link is established between the success of mono and bis functionalized fullerene acceptors in organic photovoltaics and their ability to construct mesoscopically connected electrical networks over length scales of 10 nm.
doi_str_mv 10.1073/pnas.1409514111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803096011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23805704</jstor_id><sourcerecordid>23805704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-a52102af6bd052c77e364ccc4ee5baee0ac0882e2fe693cc8a2888c8b78755413</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEokvhzAmI4MIl7Yxjx84FCZVPqYgD9Gx53cmul8Te2gmIf4-jLFvgwsmHeebxzLxF8RjhDEHW53tv0hlyaAVyRLxTrBBarBrewt1iBcBkpTjjJ8WDlHYAmVNwvzhhvFUMZbsq3nyiFJI1PZVD6MlOvYmlp_FHiN_KLsTBjC740vnSDCHut2FKZYgb450tc42iM316WNzr8kOPDu9pcfXu7deLD9Xl5_cfL15fVrZBNVZGMARmumZ9DYJZKaluuLWWE4m1IQJjQSlGrKOmra1VhimlrFpLJYXgWJ8WrxbvfloPdG3Jj9H0eh_dYOJPHYzTf1e82-pN-K45Am9RZcHzRRDS6HSybiS7tcF7sqNGbKSUIkMvD7_EcDNRGvXgkqW-N57y-hoV1NA2gPh_VHAhZaOQZ_TFP-guTNHnc82UYoJnZabOF8rGkFKk7rgcgp4T13Pi-jbx3PH0z5sc-d8RZ6A8AHPnUYeomcpKEPPGTxZkl8YQbxW1AiFhnv3ZUu9M0GYTXdJXXxhgA4Cc5-HrXzY7xEY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1548254960</pqid></control><display><type>article</type><title>Mesoscale molecular network formation in amorphous organic materials</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Savoie, Brett M. ; Kohlstedt, Kevin L. ; Jackson, Nicholas E. ; Chen, Lin X. ; de la Cruz, Monica Olvera ; Schatz, George C. ; Marks, Tobin J. ; Ratner, Mark A.</creator><creatorcontrib>Savoie, Brett M. ; Kohlstedt, Kevin L. ; Jackson, Nicholas E. ; Chen, Lin X. ; de la Cruz, Monica Olvera ; Schatz, George C. ; Marks, Tobin J. ; Ratner, Mark A. ; Energy Frontier Research Centers (EFRC) ; Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><description>High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks, even in the absence of periodic order. The hierarchical network structures of two families of important organic photovoltaic acceptors, functionalized fullerenes and perylene diimides, are analyzed using a newly developed graph methodology. The results establish a connection between network robustness and molecular topology, and also demonstrate that solubilizing moieties play a large role in disrupting the molecular networks responsible for charge transport. A clear link is established between the success of mono and bis functionalized fullerene acceptors in organic photovoltaics and their ability to construct mesoscopically connected electrical networks over length scales of 10 nm.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1409514111</identifier><identifier>PMID: 24982179</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) ; Connectivity ; Electrical networks ; Electrons ; fullerene ; Fullerenes ; Materials ; Molecular structure ; Molecules ; Network analysis ; Photovoltaic cells ; Physical Sciences ; Semiconductors ; solar energy ; solubilization ; Sonar ; Vertices</subject><ispartof>Proceedings of the National Academy of Sciences, 2014-07, Vol.111 (28), p.10055-10060</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 15, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-a52102af6bd052c77e364ccc4ee5baee0ac0882e2fe693cc8a2888c8b78755413</citedby><cites>FETCH-LOGICAL-c618t-a52102af6bd052c77e364ccc4ee5baee0ac0882e2fe693cc8a2888c8b78755413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/28.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23805704$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23805704$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24982179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1167775$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Savoie, Brett M.</creatorcontrib><creatorcontrib>Kohlstedt, Kevin L.</creatorcontrib><creatorcontrib>Jackson, Nicholas E.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><title>Mesoscale molecular network formation in amorphous organic materials</title><title>Proceedings of the National Academy of Sciences</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks, even in the absence of periodic order. The hierarchical network structures of two families of important organic photovoltaic acceptors, functionalized fullerenes and perylene diimides, are analyzed using a newly developed graph methodology. The results establish a connection between network robustness and molecular topology, and also demonstrate that solubilizing moieties play a large role in disrupting the molecular networks responsible for charge transport. A clear link is established between the success of mono and bis functionalized fullerene acceptors in organic photovoltaics and their ability to construct mesoscopically connected electrical networks over length scales of 10 nm.</description><subject>catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><subject>Connectivity</subject><subject>Electrical networks</subject><subject>Electrons</subject><subject>fullerene</subject><subject>Fullerenes</subject><subject>Materials</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Network analysis</subject><subject>Photovoltaic cells</subject><subject>Physical Sciences</subject><subject>Semiconductors</subject><subject>solar energy</subject><subject>solubilization</subject><subject>Sonar</subject><subject>Vertices</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEokvhzAmI4MIl7Yxjx84FCZVPqYgD9Gx53cmul8Te2gmIf4-jLFvgwsmHeebxzLxF8RjhDEHW53tv0hlyaAVyRLxTrBBarBrewt1iBcBkpTjjJ8WDlHYAmVNwvzhhvFUMZbsq3nyiFJI1PZVD6MlOvYmlp_FHiN_KLsTBjC740vnSDCHut2FKZYgb450tc42iM316WNzr8kOPDu9pcfXu7deLD9Xl5_cfL15fVrZBNVZGMARmumZ9DYJZKaluuLWWE4m1IQJjQSlGrKOmra1VhimlrFpLJYXgWJ8WrxbvfloPdG3Jj9H0eh_dYOJPHYzTf1e82-pN-K45Am9RZcHzRRDS6HSybiS7tcF7sqNGbKSUIkMvD7_EcDNRGvXgkqW-N57y-hoV1NA2gPh_VHAhZaOQZ_TFP-guTNHnc82UYoJnZabOF8rGkFKk7rgcgp4T13Pi-jbx3PH0z5sc-d8RZ6A8AHPnUYeomcpKEPPGTxZkl8YQbxW1AiFhnv3ZUu9M0GYTXdJXXxhgA4Cc5-HrXzY7xEY</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Savoie, Brett M.</creator><creator>Kohlstedt, Kevin L.</creator><creator>Jackson, Nicholas E.</creator><creator>Chen, Lin X.</creator><creator>de la Cruz, Monica Olvera</creator><creator>Schatz, George C.</creator><creator>Marks, Tobin J.</creator><creator>Ratner, Mark A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20140715</creationdate><title>Mesoscale molecular network formation in amorphous organic materials</title><author>Savoie, Brett M. ; Kohlstedt, Kevin L. ; Jackson, Nicholas E. ; Chen, Lin X. ; de la Cruz, Monica Olvera ; Schatz, George C. ; Marks, Tobin J. ; Ratner, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-a52102af6bd052c77e364ccc4ee5baee0ac0882e2fe693cc8a2888c8b78755413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><topic>Connectivity</topic><topic>Electrical networks</topic><topic>Electrons</topic><topic>fullerene</topic><topic>Fullerenes</topic><topic>Materials</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Network analysis</topic><topic>Photovoltaic cells</topic><topic>Physical Sciences</topic><topic>Semiconductors</topic><topic>solar energy</topic><topic>solubilization</topic><topic>Sonar</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savoie, Brett M.</creatorcontrib><creatorcontrib>Kohlstedt, Kevin L.</creatorcontrib><creatorcontrib>Jackson, Nicholas E.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savoie, Brett M.</au><au>Kohlstedt, Kevin L.</au><au>Jackson, Nicholas E.</au><au>Chen, Lin X.</au><au>de la Cruz, Monica Olvera</au><au>Schatz, George C.</au><au>Marks, Tobin J.</au><au>Ratner, Mark A.</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Argonne-Northwestern Solar Energy Research Center (ANSER)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscale molecular network formation in amorphous organic materials</atitle><jtitle>Proceedings of the National Academy of Sciences</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-07-15</date><risdate>2014</risdate><volume>111</volume><issue>28</issue><spage>10055</spage><epage>10060</epage><pages>10055-10060</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks, even in the absence of periodic order. The hierarchical network structures of two families of important organic photovoltaic acceptors, functionalized fullerenes and perylene diimides, are analyzed using a newly developed graph methodology. The results establish a connection between network robustness and molecular topology, and also demonstrate that solubilizing moieties play a large role in disrupting the molecular networks responsible for charge transport. A clear link is established between the success of mono and bis functionalized fullerene acceptors in organic photovoltaics and their ability to construct mesoscopically connected electrical networks over length scales of 10 nm.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24982179</pmid><doi>10.1073/pnas.1409514111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences, 2014-07, Vol.111 (28), p.10055-10060
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1803096011
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)
Connectivity
Electrical networks
Electrons
fullerene
Fullerenes
Materials
Molecular structure
Molecules
Network analysis
Photovoltaic cells
Physical Sciences
Semiconductors
solar energy
solubilization
Sonar
Vertices
title Mesoscale molecular network formation in amorphous organic materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscale%20molecular%20network%20formation%20in%20amorphous%20organic%20materials&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences&rft.au=Savoie,%20Brett%20M.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2014-07-15&rft.volume=111&rft.issue=28&rft.spage=10055&rft.epage=10060&rft.pages=10055-10060&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1409514111&rft_dat=%3Cjstor_proqu%3E23805704%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1548254960&rft_id=info:pmid/24982179&rft_jstor_id=23805704&rfr_iscdi=true