Mesoscale molecular network formation in amorphous organic materials
High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences 2014-07, Vol.111 (28), p.10055-10060 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10060 |
---|---|
container_issue | 28 |
container_start_page | 10055 |
container_title | Proceedings of the National Academy of Sciences |
container_volume | 111 |
creator | Savoie, Brett M. Kohlstedt, Kevin L. Jackson, Nicholas E. Chen, Lin X. de la Cruz, Monica Olvera Schatz, George C. Marks, Tobin J. Ratner, Mark A. |
description | High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks, even in the absence of periodic order. The hierarchical network structures of two families of important organic photovoltaic acceptors, functionalized fullerenes and perylene diimides, are analyzed using a newly developed graph methodology. The results establish a connection between network robustness and molecular topology, and also demonstrate that solubilizing moieties play a large role in disrupting the molecular networks responsible for charge transport. A clear link is established between the success of mono and bis functionalized fullerene acceptors in organic photovoltaics and their ability to construct mesoscopically connected electrical networks over length scales of 10 nm. |
doi_str_mv | 10.1073/pnas.1409514111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803096011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23805704</jstor_id><sourcerecordid>23805704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-a52102af6bd052c77e364ccc4ee5baee0ac0882e2fe693cc8a2888c8b78755413</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEokvhzAmI4MIl7Yxjx84FCZVPqYgD9Gx53cmul8Te2gmIf4-jLFvgwsmHeebxzLxF8RjhDEHW53tv0hlyaAVyRLxTrBBarBrewt1iBcBkpTjjJ8WDlHYAmVNwvzhhvFUMZbsq3nyiFJI1PZVD6MlOvYmlp_FHiN_KLsTBjC740vnSDCHut2FKZYgb450tc42iM316WNzr8kOPDu9pcfXu7deLD9Xl5_cfL15fVrZBNVZGMARmumZ9DYJZKaluuLWWE4m1IQJjQSlGrKOmra1VhimlrFpLJYXgWJ8WrxbvfloPdG3Jj9H0eh_dYOJPHYzTf1e82-pN-K45Am9RZcHzRRDS6HSybiS7tcF7sqNGbKSUIkMvD7_EcDNRGvXgkqW-N57y-hoV1NA2gPh_VHAhZaOQZ_TFP-guTNHnc82UYoJnZabOF8rGkFKk7rgcgp4T13Pi-jbx3PH0z5sc-d8RZ6A8AHPnUYeomcpKEPPGTxZkl8YQbxW1AiFhnv3ZUu9M0GYTXdJXXxhgA4Cc5-HrXzY7xEY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1548254960</pqid></control><display><type>article</type><title>Mesoscale molecular network formation in amorphous organic materials</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Savoie, Brett M. ; Kohlstedt, Kevin L. ; Jackson, Nicholas E. ; Chen, Lin X. ; de la Cruz, Monica Olvera ; Schatz, George C. ; Marks, Tobin J. ; Ratner, Mark A.</creator><creatorcontrib>Savoie, Brett M. ; Kohlstedt, Kevin L. ; Jackson, Nicholas E. ; Chen, Lin X. ; de la Cruz, Monica Olvera ; Schatz, George C. ; Marks, Tobin J. ; Ratner, Mark A. ; Energy Frontier Research Centers (EFRC) ; Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><description>High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks, even in the absence of periodic order. The hierarchical network structures of two families of important organic photovoltaic acceptors, functionalized fullerenes and perylene diimides, are analyzed using a newly developed graph methodology. The results establish a connection between network robustness and molecular topology, and also demonstrate that solubilizing moieties play a large role in disrupting the molecular networks responsible for charge transport. A clear link is established between the success of mono and bis functionalized fullerene acceptors in organic photovoltaics and their ability to construct mesoscopically connected electrical networks over length scales of 10 nm.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1409514111</identifier><identifier>PMID: 24982179</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) ; Connectivity ; Electrical networks ; Electrons ; fullerene ; Fullerenes ; Materials ; Molecular structure ; Molecules ; Network analysis ; Photovoltaic cells ; Physical Sciences ; Semiconductors ; solar energy ; solubilization ; Sonar ; Vertices</subject><ispartof>Proceedings of the National Academy of Sciences, 2014-07, Vol.111 (28), p.10055-10060</ispartof><rights>copyright © 1993—2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 15, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-a52102af6bd052c77e364ccc4ee5baee0ac0882e2fe693cc8a2888c8b78755413</citedby><cites>FETCH-LOGICAL-c618t-a52102af6bd052c77e364ccc4ee5baee0ac0882e2fe693cc8a2888c8b78755413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/28.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23805704$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23805704$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24982179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1167775$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Savoie, Brett M.</creatorcontrib><creatorcontrib>Kohlstedt, Kevin L.</creatorcontrib><creatorcontrib>Jackson, Nicholas E.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><title>Mesoscale molecular network formation in amorphous organic materials</title><title>Proceedings of the National Academy of Sciences</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks, even in the absence of periodic order. The hierarchical network structures of two families of important organic photovoltaic acceptors, functionalized fullerenes and perylene diimides, are analyzed using a newly developed graph methodology. The results establish a connection between network robustness and molecular topology, and also demonstrate that solubilizing moieties play a large role in disrupting the molecular networks responsible for charge transport. A clear link is established between the success of mono and bis functionalized fullerene acceptors in organic photovoltaics and their ability to construct mesoscopically connected electrical networks over length scales of 10 nm.</description><subject>catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><subject>Connectivity</subject><subject>Electrical networks</subject><subject>Electrons</subject><subject>fullerene</subject><subject>Fullerenes</subject><subject>Materials</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Network analysis</subject><subject>Photovoltaic cells</subject><subject>Physical Sciences</subject><subject>Semiconductors</subject><subject>solar energy</subject><subject>solubilization</subject><subject>Sonar</subject><subject>Vertices</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEokvhzAmI4MIl7Yxjx84FCZVPqYgD9Gx53cmul8Te2gmIf4-jLFvgwsmHeebxzLxF8RjhDEHW53tv0hlyaAVyRLxTrBBarBrewt1iBcBkpTjjJ8WDlHYAmVNwvzhhvFUMZbsq3nyiFJI1PZVD6MlOvYmlp_FHiN_KLsTBjC740vnSDCHut2FKZYgb450tc42iM316WNzr8kOPDu9pcfXu7deLD9Xl5_cfL15fVrZBNVZGMARmumZ9DYJZKaluuLWWE4m1IQJjQSlGrKOmra1VhimlrFpLJYXgWJ8WrxbvfloPdG3Jj9H0eh_dYOJPHYzTf1e82-pN-K45Am9RZcHzRRDS6HSybiS7tcF7sqNGbKSUIkMvD7_EcDNRGvXgkqW-N57y-hoV1NA2gPh_VHAhZaOQZ_TFP-guTNHnc82UYoJnZabOF8rGkFKk7rgcgp4T13Pi-jbx3PH0z5sc-d8RZ6A8AHPnUYeomcpKEPPGTxZkl8YQbxW1AiFhnv3ZUu9M0GYTXdJXXxhgA4Cc5-HrXzY7xEY</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Savoie, Brett M.</creator><creator>Kohlstedt, Kevin L.</creator><creator>Jackson, Nicholas E.</creator><creator>Chen, Lin X.</creator><creator>de la Cruz, Monica Olvera</creator><creator>Schatz, George C.</creator><creator>Marks, Tobin J.</creator><creator>Ratner, Mark A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20140715</creationdate><title>Mesoscale molecular network formation in amorphous organic materials</title><author>Savoie, Brett M. ; Kohlstedt, Kevin L. ; Jackson, Nicholas E. ; Chen, Lin X. ; de la Cruz, Monica Olvera ; Schatz, George C. ; Marks, Tobin J. ; Ratner, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-a52102af6bd052c77e364ccc4ee5baee0ac0882e2fe693cc8a2888c8b78755413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><topic>Connectivity</topic><topic>Electrical networks</topic><topic>Electrons</topic><topic>fullerene</topic><topic>Fullerenes</topic><topic>Materials</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Network analysis</topic><topic>Photovoltaic cells</topic><topic>Physical Sciences</topic><topic>Semiconductors</topic><topic>solar energy</topic><topic>solubilization</topic><topic>Sonar</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Savoie, Brett M.</creatorcontrib><creatorcontrib>Kohlstedt, Kevin L.</creatorcontrib><creatorcontrib>Jackson, Nicholas E.</creatorcontrib><creatorcontrib>Chen, Lin X.</creatorcontrib><creatorcontrib>de la Cruz, Monica Olvera</creatorcontrib><creatorcontrib>Schatz, George C.</creatorcontrib><creatorcontrib>Marks, Tobin J.</creatorcontrib><creatorcontrib>Ratner, Mark A.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Savoie, Brett M.</au><au>Kohlstedt, Kevin L.</au><au>Jackson, Nicholas E.</au><au>Chen, Lin X.</au><au>de la Cruz, Monica Olvera</au><au>Schatz, George C.</au><au>Marks, Tobin J.</au><au>Ratner, Mark A.</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Argonne-Northwestern Solar Energy Research Center (ANSER)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscale molecular network formation in amorphous organic materials</atitle><jtitle>Proceedings of the National Academy of Sciences</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-07-15</date><risdate>2014</risdate><volume>111</volume><issue>28</issue><spage>10055</spage><epage>10060</epage><pages>10055-10060</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>High-performance solution-processed organic semiconductors maintain macroscopic functionality even in the presence of microscopic disorder. Here we show that the functional robustness of certain organic materials arises from the ability of molecules to create connected mesoscopic electrical networks, even in the absence of periodic order. The hierarchical network structures of two families of important organic photovoltaic acceptors, functionalized fullerenes and perylene diimides, are analyzed using a newly developed graph methodology. The results establish a connection between network robustness and molecular topology, and also demonstrate that solubilizing moieties play a large role in disrupting the molecular networks responsible for charge transport. A clear link is established between the success of mono and bis functionalized fullerene acceptors in organic photovoltaics and their ability to construct mesoscopically connected electrical networks over length scales of 10 nm.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24982179</pmid><doi>10.1073/pnas.1409514111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences, 2014-07, Vol.111 (28), p.10055-10060 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1803096011 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) Connectivity Electrical networks Electrons fullerene Fullerenes Materials Molecular structure Molecules Network analysis Photovoltaic cells Physical Sciences Semiconductors solar energy solubilization Sonar Vertices |
title | Mesoscale molecular network formation in amorphous organic materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A50%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscale%20molecular%20network%20formation%20in%20amorphous%20organic%20materials&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences&rft.au=Savoie,%20Brett%20M.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2014-07-15&rft.volume=111&rft.issue=28&rft.spage=10055&rft.epage=10060&rft.pages=10055-10060&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1409514111&rft_dat=%3Cjstor_proqu%3E23805704%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1548254960&rft_id=info:pmid/24982179&rft_jstor_id=23805704&rfr_iscdi=true |