Robust excitons inhabit soft supramolecular nanotubes

Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-08, Vol.111 (33), p.E3367-E3375
Hauptverfasser: Eisele, Dörthe M, Arias, Dylan H, Fu, Xiaofeng, Bloemsma, Erik A, Steiner, Colby P, Jensen, Russell A, Rebentrost, Patrick, Eisele, Holger, Tokmakoff, Andrei, Lloyd, Seth, Nelson, Keith A, Nicastro, Daniela, Knoester, Jasper, Bawendi, Moungi G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E3375
container_issue 33
container_start_page E3367
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Eisele, Dörthe M
Arias, Dylan H
Fu, Xiaofeng
Bloemsma, Erik A
Steiner, Colby P
Jensen, Russell A
Rebentrost, Patrick
Eisele, Holger
Tokmakoff, Andrei
Lloyd, Seth
Nelson, Keith A
Nicastro, Daniela
Knoester, Jasper
Bawendi, Moungi G
description Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials.
doi_str_mv 10.1073/pnas.1408342111
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803089823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803089823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-9d79c87cb914e95220aafa4ac16362e852dc6db54df69ab58ad31828478017a73</originalsourceid><addsrcrecordid>eNpdkctv1DAQxi0EosvCmRtEcOGSdsaPxL5UQlV5SJWQgJ6tieN0U2XtxU4Q_Pd4tcvyuHgO_s03M9_H2HOEc4RWXOwC5XOUoIXkiPiArRAM1o008JCtAHhba8nlGXuS8z0AGKXhMTvjCgwXolkx9Tl2S54r_8ONcwy5GsOGunGuchzKs-wSbePk3TJRqgKFOC-dz0_Zo4Gm7J8d65rdvrv-evWhvvn0_uPV25vaKdPMtelb43TrOoPSG8U5EA0kyWEjGu614r1r-k7JfmgMdUpTL1BzLVsN2FIr1uzyoLtbuq3vnQ9zosnu0ril9NNGGu2_P2Hc2Lv43UqU3BgoAq8OAjHPo83lRu82Lobg3WxR6KbVWKA3xykpflt8nu12zM5PEwUfl2xRgwBtdHFszV7_h97HJYXigUWlGoAWuSrUxYFyKeac_HDaGMHuc7P73Oyf3ErHi78PPfG_gypAdQT2nSc5RCuEvS7E3qyXB2SgaOkujdnefuGAZSuUQgIXvwBmG6bd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1556007125</pqid></control><display><type>article</type><title>Robust excitons inhabit soft supramolecular nanotubes</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Eisele, Dörthe M ; Arias, Dylan H ; Fu, Xiaofeng ; Bloemsma, Erik A ; Steiner, Colby P ; Jensen, Russell A ; Rebentrost, Patrick ; Eisele, Holger ; Tokmakoff, Andrei ; Lloyd, Seth ; Nelson, Keith A ; Nicastro, Daniela ; Knoester, Jasper ; Bawendi, Moungi G</creator><creatorcontrib>Eisele, Dörthe M ; Arias, Dylan H ; Fu, Xiaofeng ; Bloemsma, Erik A ; Steiner, Colby P ; Jensen, Russell A ; Rebentrost, Patrick ; Eisele, Holger ; Tokmakoff, Andrei ; Lloyd, Seth ; Nelson, Keith A ; Nicastro, Daniela ; Knoester, Jasper ; Bawendi, Moungi G ; Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><description>Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1408342111</identifier><identifier>PMID: 25092336</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Carbocyanines - chemistry ; Chlorobiales ; Coloring Agents - chemistry ; energy efficiency ; light harvesting complex ; Models, Theoretical ; Molecules ; Nanocrystals ; Nanotubes ; Photosynthesis ; Physical Sciences ; PNAS Plus ; solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-08, Vol.111 (33), p.E3367-E3375</ispartof><rights>Copyright National Academy of Sciences Aug 19, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-9d79c87cb914e95220aafa4ac16362e852dc6db54df69ab58ad31828478017a73</citedby><cites>FETCH-LOGICAL-c596t-9d79c87cb914e95220aafa4ac16362e852dc6db54df69ab58ad31828478017a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142990/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142990/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25092336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1386781$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eisele, Dörthe M</creatorcontrib><creatorcontrib>Arias, Dylan H</creatorcontrib><creatorcontrib>Fu, Xiaofeng</creatorcontrib><creatorcontrib>Bloemsma, Erik A</creatorcontrib><creatorcontrib>Steiner, Colby P</creatorcontrib><creatorcontrib>Jensen, Russell A</creatorcontrib><creatorcontrib>Rebentrost, Patrick</creatorcontrib><creatorcontrib>Eisele, Holger</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><creatorcontrib>Nelson, Keith A</creatorcontrib><creatorcontrib>Nicastro, Daniela</creatorcontrib><creatorcontrib>Knoester, Jasper</creatorcontrib><creatorcontrib>Bawendi, Moungi G</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><title>Robust excitons inhabit soft supramolecular nanotubes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials.</description><subject>Carbocyanines - chemistry</subject><subject>Chlorobiales</subject><subject>Coloring Agents - chemistry</subject><subject>energy efficiency</subject><subject>light harvesting complex</subject><subject>Models, Theoretical</subject><subject>Molecules</subject><subject>Nanocrystals</subject><subject>Nanotubes</subject><subject>Photosynthesis</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctv1DAQxi0EosvCmRtEcOGSdsaPxL5UQlV5SJWQgJ6tieN0U2XtxU4Q_Pd4tcvyuHgO_s03M9_H2HOEc4RWXOwC5XOUoIXkiPiArRAM1o008JCtAHhba8nlGXuS8z0AGKXhMTvjCgwXolkx9Tl2S54r_8ONcwy5GsOGunGuchzKs-wSbePk3TJRqgKFOC-dz0_Zo4Gm7J8d65rdvrv-evWhvvn0_uPV25vaKdPMtelb43TrOoPSG8U5EA0kyWEjGu614r1r-k7JfmgMdUpTL1BzLVsN2FIr1uzyoLtbuq3vnQ9zosnu0ril9NNGGu2_P2Hc2Lv43UqU3BgoAq8OAjHPo83lRu82Lobg3WxR6KbVWKA3xykpflt8nu12zM5PEwUfl2xRgwBtdHFszV7_h97HJYXigUWlGoAWuSrUxYFyKeac_HDaGMHuc7P73Oyf3ErHi78PPfG_gypAdQT2nSc5RCuEvS7E3qyXB2SgaOkujdnefuGAZSuUQgIXvwBmG6bd</recordid><startdate>20140819</startdate><enddate>20140819</enddate><creator>Eisele, Dörthe M</creator><creator>Arias, Dylan H</creator><creator>Fu, Xiaofeng</creator><creator>Bloemsma, Erik A</creator><creator>Steiner, Colby P</creator><creator>Jensen, Russell A</creator><creator>Rebentrost, Patrick</creator><creator>Eisele, Holger</creator><creator>Tokmakoff, Andrei</creator><creator>Lloyd, Seth</creator><creator>Nelson, Keith A</creator><creator>Nicastro, Daniela</creator><creator>Knoester, Jasper</creator><creator>Bawendi, Moungi G</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20140819</creationdate><title>Robust excitons inhabit soft supramolecular nanotubes</title><author>Eisele, Dörthe M ; Arias, Dylan H ; Fu, Xiaofeng ; Bloemsma, Erik A ; Steiner, Colby P ; Jensen, Russell A ; Rebentrost, Patrick ; Eisele, Holger ; Tokmakoff, Andrei ; Lloyd, Seth ; Nelson, Keith A ; Nicastro, Daniela ; Knoester, Jasper ; Bawendi, Moungi G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-9d79c87cb914e95220aafa4ac16362e852dc6db54df69ab58ad31828478017a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbocyanines - chemistry</topic><topic>Chlorobiales</topic><topic>Coloring Agents - chemistry</topic><topic>energy efficiency</topic><topic>light harvesting complex</topic><topic>Models, Theoretical</topic><topic>Molecules</topic><topic>Nanocrystals</topic><topic>Nanotubes</topic><topic>Photosynthesis</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisele, Dörthe M</creatorcontrib><creatorcontrib>Arias, Dylan H</creatorcontrib><creatorcontrib>Fu, Xiaofeng</creatorcontrib><creatorcontrib>Bloemsma, Erik A</creatorcontrib><creatorcontrib>Steiner, Colby P</creatorcontrib><creatorcontrib>Jensen, Russell A</creatorcontrib><creatorcontrib>Rebentrost, Patrick</creatorcontrib><creatorcontrib>Eisele, Holger</creatorcontrib><creatorcontrib>Tokmakoff, Andrei</creatorcontrib><creatorcontrib>Lloyd, Seth</creatorcontrib><creatorcontrib>Nelson, Keith A</creatorcontrib><creatorcontrib>Nicastro, Daniela</creatorcontrib><creatorcontrib>Knoester, Jasper</creatorcontrib><creatorcontrib>Bawendi, Moungi G</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisele, Dörthe M</au><au>Arias, Dylan H</au><au>Fu, Xiaofeng</au><au>Bloemsma, Erik A</au><au>Steiner, Colby P</au><au>Jensen, Russell A</au><au>Rebentrost, Patrick</au><au>Eisele, Holger</au><au>Tokmakoff, Andrei</au><au>Lloyd, Seth</au><au>Nelson, Keith A</au><au>Nicastro, Daniela</au><au>Knoester, Jasper</au><au>Bawendi, Moungi G</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust excitons inhabit soft supramolecular nanotubes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-08-19</date><risdate>2014</risdate><volume>111</volume><issue>33</issue><spage>E3367</spage><epage>E3375</epage><pages>E3367-E3375</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25092336</pmid><doi>10.1073/pnas.1408342111</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-08, Vol.111 (33), p.E3367-E3375
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1803089823
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Carbocyanines - chemistry
Chlorobiales
Coloring Agents - chemistry
energy efficiency
light harvesting complex
Models, Theoretical
Molecules
Nanocrystals
Nanotubes
Photosynthesis
Physical Sciences
PNAS Plus
solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
title Robust excitons inhabit soft supramolecular nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20excitons%20inhabit%20soft%20supramolecular%20nanotubes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Eisele,%20D%C3%B6rthe%20M&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Excitonics%20(CE)&rft.date=2014-08-19&rft.volume=111&rft.issue=33&rft.spage=E3367&rft.epage=E3375&rft.pages=E3367-E3375&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1408342111&rft_dat=%3Cproquest_pubme%3E1803089823%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1556007125&rft_id=info:pmid/25092336&rfr_iscdi=true