Site-specific vibrational spectral signatures of water molecules in the magic H₃O⁺(H₂O)₂₀ and Cs⁺(H₂O)₂₀ clusters
Significance Understanding the mechanics underlying the diffuse OH stretching spectrum of water is a grand challenge for contemporary physical chemistry. Water clusters play an increasingly important role in this endeavor, as they allow one to freeze and isolate the spectral behavior of relatively l...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-12, Vol.111 (51), p.18132-18137 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18137 |
---|---|
container_issue | 51 |
container_start_page | 18132 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Fournier, Joseph A. Wolke, Conrad T. Johnson, Christopher J. Johnson, Mark A. Heine, Nadja Gewinner, Sandy Schöllkopf, Wieland Esser, Tim K. Fagiani, Matias R. Knorke, Harald Asmis, Knut R. |
description | Significance Understanding the mechanics underlying the diffuse OH stretching spectrum of water is a grand challenge for contemporary physical chemistry. Water clusters play an increasingly important role in this endeavor, as they allow one to freeze and isolate the spectral behavior of relatively large assemblies with well-defined network morphologies. We exploit recently developed, hybrid instruments that integrate laser spectroscopy with cryogenic ion trap mass spectrometry to capture the H ₃O ⁺ and Cs ⁺ ions in cage structures formed by 20 water molecules. Their infrared spectra reveal a pattern of distinct transitions that is unprecedented for water networks in this size range. Theoretical analysis of these patterns then reveals the intramolecular distortions associated with water molecules at various sites in the 3D cages.
Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H ₃O ⁺ and Cs ⁺ ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm ⁻¹ range. The magic H ₃O ⁺(H ₂O) ₂₀ cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface. |
doi_str_mv | 10.1073/pnas.1420734111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803080291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43279109</jstor_id><sourcerecordid>43279109</sourcerecordid><originalsourceid>FETCH-LOGICAL-f300t-aa9fef92518de8a4844cd33eaaef482d5168bc79915dd59048e68a19bdb664873</originalsourceid><addsrcrecordid>eNqFks1uEzEUhS0EoqGwZgV42S6mXP_MjL1BQhHQSpWyKF1bd2Y8qav5CbaniB2kb8Xj5ElwlBC1YsHGvjrn8_G1rgl5zeCMQSnerwYMZ0zyVEvG2BMyY6BZVkgNT8kMgJeZklwekRch3AKAzhU8J0c8l0pDoWbk_spFm4WVrV3ranrnKo_RjQN2dCtGvy3ccsA4eRvo2NLvGK2n_djZeuqS5AYabyztcZnOn2_W94vNr98nqVgvTtOyWf-kODR0Hv6R624KKSu8JM9a7IJ9td-PyfXnT1_n59nl4svF_ONl1gqAmCHq1raa50w1VqFUUtaNEBbRtlLxJmeFqupSa5Y3Ta5BKlsoZLpqqqKQqhTH5MMudzVVvW1qO2yfZ1be9eh_mBGdeewM7sYsxzsjuYJc6RRwsg_w47fJhmh6F2rbdTjYcQqGKRCggGv2f7SQqUGQpUzo24dtHfr5O6QE0D2Qpn2w07hNztKdTPCEvNkhtyGO_sBIwUudfkTy3-38FkeDS--Cub7iwAoAJpTKhfgDcMK6hQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1640480474</pqid></control><display><type>article</type><title>Site-specific vibrational spectral signatures of water molecules in the magic H₃O⁺(H₂O)₂₀ and Cs⁺(H₂O)₂₀ clusters</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fournier, Joseph A. ; Wolke, Conrad T. ; Johnson, Christopher J. ; Johnson, Mark A. ; Heine, Nadja ; Gewinner, Sandy ; Schöllkopf, Wieland ; Esser, Tim K. ; Fagiani, Matias R. ; Knorke, Harald ; Asmis, Knut R.</creator><creatorcontrib>Fournier, Joseph A. ; Wolke, Conrad T. ; Johnson, Christopher J. ; Johnson, Mark A. ; Heine, Nadja ; Gewinner, Sandy ; Schöllkopf, Wieland ; Esser, Tim K. ; Fagiani, Matias R. ; Knorke, Harald ; Asmis, Knut R.</creatorcontrib><description>Significance Understanding the mechanics underlying the diffuse OH stretching spectrum of water is a grand challenge for contemporary physical chemistry. Water clusters play an increasingly important role in this endeavor, as they allow one to freeze and isolate the spectral behavior of relatively large assemblies with well-defined network morphologies. We exploit recently developed, hybrid instruments that integrate laser spectroscopy with cryogenic ion trap mass spectrometry to capture the H ₃O ⁺ and Cs ⁺ ions in cage structures formed by 20 water molecules. Their infrared spectra reveal a pattern of distinct transitions that is unprecedented for water networks in this size range. Theoretical analysis of these patterns then reveals the intramolecular distortions associated with water molecules at various sites in the 3D cages.
Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H ₃O ⁺ and Cs ⁺ ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm ⁻¹ range. The magic H ₃O ⁺(H ₂O) ₂₀ cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1420734111</identifier><identifier>PMID: 25489068</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>cages ; cesium ; Contrapuntal motion ; Infrared radiation ; Ions ; mass spectrometry ; mechanics ; Molecular structure ; Molecules ; physical chemistry ; Physical Sciences ; Spectral bands ; Spectral signatures ; Spectroscopy ; Surface water ; Vibrational spectra</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (51), p.18132-18137</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/51.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43279109$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43279109$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25489068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fournier, Joseph A.</creatorcontrib><creatorcontrib>Wolke, Conrad T.</creatorcontrib><creatorcontrib>Johnson, Christopher J.</creatorcontrib><creatorcontrib>Johnson, Mark A.</creatorcontrib><creatorcontrib>Heine, Nadja</creatorcontrib><creatorcontrib>Gewinner, Sandy</creatorcontrib><creatorcontrib>Schöllkopf, Wieland</creatorcontrib><creatorcontrib>Esser, Tim K.</creatorcontrib><creatorcontrib>Fagiani, Matias R.</creatorcontrib><creatorcontrib>Knorke, Harald</creatorcontrib><creatorcontrib>Asmis, Knut R.</creatorcontrib><title>Site-specific vibrational spectral signatures of water molecules in the magic H₃O⁺(H₂O)₂₀ and Cs⁺(H₂O)₂₀ clusters</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance Understanding the mechanics underlying the diffuse OH stretching spectrum of water is a grand challenge for contemporary physical chemistry. Water clusters play an increasingly important role in this endeavor, as they allow one to freeze and isolate the spectral behavior of relatively large assemblies with well-defined network morphologies. We exploit recently developed, hybrid instruments that integrate laser spectroscopy with cryogenic ion trap mass spectrometry to capture the H ₃O ⁺ and Cs ⁺ ions in cage structures formed by 20 water molecules. Their infrared spectra reveal a pattern of distinct transitions that is unprecedented for water networks in this size range. Theoretical analysis of these patterns then reveals the intramolecular distortions associated with water molecules at various sites in the 3D cages.
Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H ₃O ⁺ and Cs ⁺ ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm ⁻¹ range. The magic H ₃O ⁺(H ₂O) ₂₀ cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface.</description><subject>cages</subject><subject>cesium</subject><subject>Contrapuntal motion</subject><subject>Infrared radiation</subject><subject>Ions</subject><subject>mass spectrometry</subject><subject>mechanics</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>physical chemistry</subject><subject>Physical Sciences</subject><subject>Spectral bands</subject><subject>Spectral signatures</subject><subject>Spectroscopy</subject><subject>Surface water</subject><subject>Vibrational spectra</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFks1uEzEUhS0EoqGwZgV42S6mXP_MjL1BQhHQSpWyKF1bd2Y8qav5CbaniB2kb8Xj5ElwlBC1YsHGvjrn8_G1rgl5zeCMQSnerwYMZ0zyVEvG2BMyY6BZVkgNT8kMgJeZklwekRch3AKAzhU8J0c8l0pDoWbk_spFm4WVrV3ranrnKo_RjQN2dCtGvy3ccsA4eRvo2NLvGK2n_djZeuqS5AYabyztcZnOn2_W94vNr98nqVgvTtOyWf-kODR0Hv6R624KKSu8JM9a7IJ9td-PyfXnT1_n59nl4svF_ONl1gqAmCHq1raa50w1VqFUUtaNEBbRtlLxJmeFqupSa5Y3Ta5BKlsoZLpqqqKQqhTH5MMudzVVvW1qO2yfZ1be9eh_mBGdeewM7sYsxzsjuYJc6RRwsg_w47fJhmh6F2rbdTjYcQqGKRCggGv2f7SQqUGQpUzo24dtHfr5O6QE0D2Qpn2w07hNztKdTPCEvNkhtyGO_sBIwUudfkTy3-38FkeDS--Cub7iwAoAJpTKhfgDcMK6hQ</recordid><startdate>20141223</startdate><enddate>20141223</enddate><creator>Fournier, Joseph A.</creator><creator>Wolke, Conrad T.</creator><creator>Johnson, Christopher J.</creator><creator>Johnson, Mark A.</creator><creator>Heine, Nadja</creator><creator>Gewinner, Sandy</creator><creator>Schöllkopf, Wieland</creator><creator>Esser, Tim K.</creator><creator>Fagiani, Matias R.</creator><creator>Knorke, Harald</creator><creator>Asmis, Knut R.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20141223</creationdate><title>Site-specific vibrational spectral signatures of water molecules in the magic H₃O⁺(H₂O)₂₀ and Cs⁺(H₂O)₂₀ clusters</title><author>Fournier, Joseph A. ; Wolke, Conrad T. ; Johnson, Christopher J. ; Johnson, Mark A. ; Heine, Nadja ; Gewinner, Sandy ; Schöllkopf, Wieland ; Esser, Tim K. ; Fagiani, Matias R. ; Knorke, Harald ; Asmis, Knut R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f300t-aa9fef92518de8a4844cd33eaaef482d5168bc79915dd59048e68a19bdb664873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>cages</topic><topic>cesium</topic><topic>Contrapuntal motion</topic><topic>Infrared radiation</topic><topic>Ions</topic><topic>mass spectrometry</topic><topic>mechanics</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>physical chemistry</topic><topic>Physical Sciences</topic><topic>Spectral bands</topic><topic>Spectral signatures</topic><topic>Spectroscopy</topic><topic>Surface water</topic><topic>Vibrational spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fournier, Joseph A.</creatorcontrib><creatorcontrib>Wolke, Conrad T.</creatorcontrib><creatorcontrib>Johnson, Christopher J.</creatorcontrib><creatorcontrib>Johnson, Mark A.</creatorcontrib><creatorcontrib>Heine, Nadja</creatorcontrib><creatorcontrib>Gewinner, Sandy</creatorcontrib><creatorcontrib>Schöllkopf, Wieland</creatorcontrib><creatorcontrib>Esser, Tim K.</creatorcontrib><creatorcontrib>Fagiani, Matias R.</creatorcontrib><creatorcontrib>Knorke, Harald</creatorcontrib><creatorcontrib>Asmis, Knut R.</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fournier, Joseph A.</au><au>Wolke, Conrad T.</au><au>Johnson, Christopher J.</au><au>Johnson, Mark A.</au><au>Heine, Nadja</au><au>Gewinner, Sandy</au><au>Schöllkopf, Wieland</au><au>Esser, Tim K.</au><au>Fagiani, Matias R.</au><au>Knorke, Harald</au><au>Asmis, Knut R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-specific vibrational spectral signatures of water molecules in the magic H₃O⁺(H₂O)₂₀ and Cs⁺(H₂O)₂₀ clusters</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-12-23</date><risdate>2014</risdate><volume>111</volume><issue>51</issue><spage>18132</spage><epage>18137</epage><pages>18132-18137</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance Understanding the mechanics underlying the diffuse OH stretching spectrum of water is a grand challenge for contemporary physical chemistry. Water clusters play an increasingly important role in this endeavor, as they allow one to freeze and isolate the spectral behavior of relatively large assemblies with well-defined network morphologies. We exploit recently developed, hybrid instruments that integrate laser spectroscopy with cryogenic ion trap mass spectrometry to capture the H ₃O ⁺ and Cs ⁺ ions in cage structures formed by 20 water molecules. Their infrared spectra reveal a pattern of distinct transitions that is unprecedented for water networks in this size range. Theoretical analysis of these patterns then reveals the intramolecular distortions associated with water molecules at various sites in the 3D cages.
Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H ₃O ⁺ and Cs ⁺ ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm ⁻¹ range. The magic H ₃O ⁺(H ₂O) ₂₀ cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25489068</pmid><doi>10.1073/pnas.1420734111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-12, Vol.111 (51), p.18132-18137 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1803080291 |
source | Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | cages cesium Contrapuntal motion Infrared radiation Ions mass spectrometry mechanics Molecular structure Molecules physical chemistry Physical Sciences Spectral bands Spectral signatures Spectroscopy Surface water Vibrational spectra |
title | Site-specific vibrational spectral signatures of water molecules in the magic H₃O⁺(H₂O)₂₀ and Cs⁺(H₂O)₂₀ clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-specific%20vibrational%20spectral%20signatures%20of%20water%20molecules%20in%20the%20magic%20H%E2%82%83O%E2%81%BA(H%E2%82%82O)%E2%82%82%E2%82%80%20and%20Cs%E2%81%BA(H%E2%82%82O)%E2%82%82%E2%82%80%20clusters&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fournier,%20Joseph%20A.&rft.date=2014-12-23&rft.volume=111&rft.issue=51&rft.spage=18132&rft.epage=18137&rft.pages=18132-18137&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1420734111&rft_dat=%3Cjstor_proqu%3E43279109%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1640480474&rft_id=info:pmid/25489068&rft_jstor_id=43279109&rfr_iscdi=true |