Stoichiometry of SecYEG in the active translocase of Escherichia coli varies with precursor species

We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-07, Vol.110 (29), p.11815-11820
Hauptverfasser: Mao, Chunfeng, Cheadle, Carl E., Hardy, Simon J. S., Lilly, Angela A., Suo, Yuying, Gari, Raghavendar Reddy Sanganna, King, Gavin M., Randall, Linda L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11820
container_issue 29
container_start_page 11815
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Mao, Chunfeng
Cheadle, Carl E.
Hardy, Simon J. S.
Lilly, Angela A.
Suo, Yuying
Gari, Raghavendar Reddy Sanganna
King, Gavin M.
Randall, Linda L.
description We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. Assays using these robust reconstituted proteoliposomes and cytoplasmic membrane vesicles have revealed that the number of SecYEG units involved in an active translocase depends on the precursor undergoing transfer. The active translocase for the precursor of periplasmic galactose-binding protein contains twice the number of heterotrimeric units of SecYEG as does that for the precursor of outer membrane protein A.
doi_str_mv 10.1073/pnas.1303289110
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803078679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42712485</jstor_id><sourcerecordid>42712485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-19ebeb538cb8ff8006a0d74f54bbfce71ad965014f414d46ae391aa05782c6fb3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEotvCmRNgqRcuaWdsJ7EvSKhaClIlDksPnCzHazdeZePFThb1v8fRLsvHhdNIfr_3PPYrilcIVwgNu94NOl0hA0aFRIQnxQJBYllzCU-LBQBtSsEpPyvOU9oAgKwEPC_OKBMoKskWhVmNwZvOh60d4yMJjqys-ba8JX4gY2eJNqPfWzJGPaQ-GJ3szCyT6WycfZqY0Huy19HbRH74sSO7aM0UU4gk7azJxy-KZ073yb48zovi_uPy682n8u7L7eebD3elqWg1lihta9uKCdMK5wRArWHdcFfxtnXGNqjXsq4AuePI17zWlknUGqpGUFO7ll0U7w-5u6nd2rWxQ167V7votzo-qqC9-lsZfKcewl6xBgWiyAHvjgExfJ9sGtXWJ2P7Xg82TEmhAAaNqBv5f5TD3AQDyOjlP-gmTHHIP5EpRCpzW1Wmrg-UiSGlaN1pbwQ1d63mrtXvrrPjzZ_PPfG_ys0AOQKz8xSX86jMQ-B86-sDskljiCeG0wYpF7P-9qA7HZR-iD6p-xUFrAGQCZ4TfgJ4mMNm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411296495</pqid></control><display><type>article</type><title>Stoichiometry of SecYEG in the active translocase of Escherichia coli varies with precursor species</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mao, Chunfeng ; Cheadle, Carl E. ; Hardy, Simon J. S. ; Lilly, Angela A. ; Suo, Yuying ; Gari, Raghavendar Reddy Sanganna ; King, Gavin M. ; Randall, Linda L.</creator><creatorcontrib>Mao, Chunfeng ; Cheadle, Carl E. ; Hardy, Simon J. S. ; Lilly, Angela A. ; Suo, Yuying ; Gari, Raghavendar Reddy Sanganna ; King, Gavin M. ; Randall, Linda L.</creatorcontrib><description>We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. Assays using these robust reconstituted proteoliposomes and cytoplasmic membrane vesicles have revealed that the number of SecYEG units involved in an active translocase depends on the precursor undergoing transfer. The active translocase for the precursor of periplasmic galactose-binding protein contains twice the number of heterotrimeric units of SecYEG as does that for the precursor of outer membrane protein A.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1303289110</identifier><identifier>PMID: 23818593</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosine triphosphatases ; Binding sites ; Biological Sciences ; Calcium-Binding Proteins - metabolism ; Carbon Radioisotopes - metabolism ; Cell membranes ; Cytoplasm ; E coli ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Hydrolysis ; Lipids ; Liposomes ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membranes ; Microscopy, Atomic Force ; Monosaccharide Transport Proteins - metabolism ; outer membrane proteins ; Periplasmic Binding Proteins - metabolism ; Protein precursors ; Protein subunits ; Protein transport ; Proteins ; Proteolipids - metabolism ; SEC Translocation Channels ; stoichiometry ; Sulfur Radioisotopes - metabolism ; Transport Vesicles - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (29), p.11815-11820</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 16, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-19ebeb538cb8ff8006a0d74f54bbfce71ad965014f414d46ae391aa05782c6fb3</citedby><cites>FETCH-LOGICAL-c525t-19ebeb538cb8ff8006a0d74f54bbfce71ad965014f414d46ae391aa05782c6fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42712485$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42712485$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23818593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Chunfeng</creatorcontrib><creatorcontrib>Cheadle, Carl E.</creatorcontrib><creatorcontrib>Hardy, Simon J. S.</creatorcontrib><creatorcontrib>Lilly, Angela A.</creatorcontrib><creatorcontrib>Suo, Yuying</creatorcontrib><creatorcontrib>Gari, Raghavendar Reddy Sanganna</creatorcontrib><creatorcontrib>King, Gavin M.</creatorcontrib><creatorcontrib>Randall, Linda L.</creatorcontrib><title>Stoichiometry of SecYEG in the active translocase of Escherichia coli varies with precursor species</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. Assays using these robust reconstituted proteoliposomes and cytoplasmic membrane vesicles have revealed that the number of SecYEG units involved in an active translocase depends on the precursor undergoing transfer. The active translocase for the precursor of periplasmic galactose-binding protein contains twice the number of heterotrimeric units of SecYEG as does that for the precursor of outer membrane protein A.</description><subject>Adenosine triphosphatases</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Carbon Radioisotopes - metabolism</subject><subject>Cell membranes</subject><subject>Cytoplasm</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Hydrolysis</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Microscopy, Atomic Force</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>outer membrane proteins</subject><subject>Periplasmic Binding Proteins - metabolism</subject><subject>Protein precursors</subject><subject>Protein subunits</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Proteolipids - metabolism</subject><subject>SEC Translocation Channels</subject><subject>stoichiometry</subject><subject>Sulfur Radioisotopes - metabolism</subject><subject>Transport Vesicles - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEotvCmRNgqRcuaWdsJ7EvSKhaClIlDksPnCzHazdeZePFThb1v8fRLsvHhdNIfr_3PPYrilcIVwgNu94NOl0hA0aFRIQnxQJBYllzCU-LBQBtSsEpPyvOU9oAgKwEPC_OKBMoKskWhVmNwZvOh60d4yMJjqys-ba8JX4gY2eJNqPfWzJGPaQ-GJ3szCyT6WycfZqY0Huy19HbRH74sSO7aM0UU4gk7azJxy-KZ073yb48zovi_uPy682n8u7L7eebD3elqWg1lihta9uKCdMK5wRArWHdcFfxtnXGNqjXsq4AuePI17zWlknUGqpGUFO7ll0U7w-5u6nd2rWxQ167V7votzo-qqC9-lsZfKcewl6xBgWiyAHvjgExfJ9sGtXWJ2P7Xg82TEmhAAaNqBv5f5TD3AQDyOjlP-gmTHHIP5EpRCpzW1Wmrg-UiSGlaN1pbwQ1d63mrtXvrrPjzZ_PPfG_ys0AOQKz8xSX86jMQ-B86-sDskljiCeG0wYpF7P-9qA7HZR-iD6p-xUFrAGQCZ4TfgJ4mMNm</recordid><startdate>20130716</startdate><enddate>20130716</enddate><creator>Mao, Chunfeng</creator><creator>Cheadle, Carl E.</creator><creator>Hardy, Simon J. S.</creator><creator>Lilly, Angela A.</creator><creator>Suo, Yuying</creator><creator>Gari, Raghavendar Reddy Sanganna</creator><creator>King, Gavin M.</creator><creator>Randall, Linda L.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130716</creationdate><title>Stoichiometry of SecYEG in the active translocase of Escherichia coli varies with precursor species</title><author>Mao, Chunfeng ; Cheadle, Carl E. ; Hardy, Simon J. S. ; Lilly, Angela A. ; Suo, Yuying ; Gari, Raghavendar Reddy Sanganna ; King, Gavin M. ; Randall, Linda L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-19ebeb538cb8ff8006a0d74f54bbfce71ad965014f414d46ae391aa05782c6fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine triphosphatases</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Carbon Radioisotopes - metabolism</topic><topic>Cell membranes</topic><topic>Cytoplasm</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Hydrolysis</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Microscopy, Atomic Force</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>outer membrane proteins</topic><topic>Periplasmic Binding Proteins - metabolism</topic><topic>Protein precursors</topic><topic>Protein subunits</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Proteolipids - metabolism</topic><topic>SEC Translocation Channels</topic><topic>stoichiometry</topic><topic>Sulfur Radioisotopes - metabolism</topic><topic>Transport Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Chunfeng</creatorcontrib><creatorcontrib>Cheadle, Carl E.</creatorcontrib><creatorcontrib>Hardy, Simon J. S.</creatorcontrib><creatorcontrib>Lilly, Angela A.</creatorcontrib><creatorcontrib>Suo, Yuying</creatorcontrib><creatorcontrib>Gari, Raghavendar Reddy Sanganna</creatorcontrib><creatorcontrib>King, Gavin M.</creatorcontrib><creatorcontrib>Randall, Linda L.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Chunfeng</au><au>Cheadle, Carl E.</au><au>Hardy, Simon J. S.</au><au>Lilly, Angela A.</au><au>Suo, Yuying</au><au>Gari, Raghavendar Reddy Sanganna</au><au>King, Gavin M.</au><au>Randall, Linda L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stoichiometry of SecYEG in the active translocase of Escherichia coli varies with precursor species</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-07-16</date><risdate>2013</risdate><volume>110</volume><issue>29</issue><spage>11815</spage><epage>11820</epage><pages>11815-11820</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We have established a reconstitution system for the translocon SecYEG in proteoliposomes in which 55% of the accessible translocons are active. This level corresponds to the fraction of translocons that are active in vitro when assessed in their native environment of cytoplasmic membrane vesicles. Assays using these robust reconstituted proteoliposomes and cytoplasmic membrane vesicles have revealed that the number of SecYEG units involved in an active translocase depends on the precursor undergoing transfer. The active translocase for the precursor of periplasmic galactose-binding protein contains twice the number of heterotrimeric units of SecYEG as does that for the precursor of outer membrane protein A.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23818593</pmid><doi>10.1073/pnas.1303289110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-07, Vol.110 (29), p.11815-11820
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1803078679
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine triphosphatases
Binding sites
Biological Sciences
Calcium-Binding Proteins - metabolism
Carbon Radioisotopes - metabolism
Cell membranes
Cytoplasm
E coli
Escherichia coli
Escherichia coli - enzymology
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Hydrolysis
Lipids
Liposomes
Membrane Proteins - genetics
Membrane Proteins - metabolism
Membranes
Microscopy, Atomic Force
Monosaccharide Transport Proteins - metabolism
outer membrane proteins
Periplasmic Binding Proteins - metabolism
Protein precursors
Protein subunits
Protein transport
Proteins
Proteolipids - metabolism
SEC Translocation Channels
stoichiometry
Sulfur Radioisotopes - metabolism
Transport Vesicles - metabolism
title Stoichiometry of SecYEG in the active translocase of Escherichia coli varies with precursor species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stoichiometry%20of%20SecYEG%20in%20the%20active%20translocase%20of%20Escherichia%20coli%20varies%20with%20precursor%20species&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mao,%20Chunfeng&rft.date=2013-07-16&rft.volume=110&rft.issue=29&rft.spage=11815&rft.epage=11820&rft.pages=11815-11820&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1303289110&rft_dat=%3Cjstor_proqu%3E42712485%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1411296495&rft_id=info:pmid/23818593&rft_jstor_id=42712485&rfr_iscdi=true