Why Do Nucleosomes Unwrap Asymmetrically?

Nucleosomes, DNA spools with a protein core, engage about three-quarters of eukaryotic DNA and play a critical role in chromosomal processes, ranging from gene regulation, recombination, and replication to chromosome condensation. For more than a decade, micromanipulation experiments where nucleosom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2016-07, Vol.120 (26), p.5855-5863
Hauptverfasser: de Bruin, Lennart, Tompitak, Marco, Eslami-Mossallam, Behrouz, Schiessel, Helmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5863
container_issue 26
container_start_page 5855
container_title The journal of physical chemistry. B
container_volume 120
creator de Bruin, Lennart
Tompitak, Marco
Eslami-Mossallam, Behrouz
Schiessel, Helmut
description Nucleosomes, DNA spools with a protein core, engage about three-quarters of eukaryotic DNA and play a critical role in chromosomal processes, ranging from gene regulation, recombination, and replication to chromosome condensation. For more than a decade, micromanipulation experiments where nucleosomes are put under tension, as well as the theoretical interpretations of these experiments, have deepened our understanding of the stability and dynamics of nucleosomes. Here we give a theoretical explanation for a surprising new experimental finding: nucleosomes wrapped onto the 601 positioning sequence (the sequence used in most laboratories) respond highly asymmetrically to external forces by always unwrapping from the same end. Using a computational nucleosome model, we show that this asymmetry can be explained by differences in the DNA mechanics of two very short stretches on the wrapped DNA portion. Our finding suggests that the physical properties of nucleosomes, here the response to forces, can be tuned locally by the choice of the underlying base-pair sequence. This leads to a new view of nucleosomes: a physically highly varied set of DNA–protein complexes whose properties can be tuned on evolutionary time scales to their specific function in the genomic context.
doi_str_mv 10.1021/acs.jpcb.6b00391
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1802737463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1802737463</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-10575010e681c7cc481ccd337e5f96d8715e2b8a6ac0092fe695fe1da0bcb5d33</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwM6GMIJFy59R2MqGqfEoVLFSMluM4olVSBzsRyr_HpYGN4XQ3PO8r3UPIOcIUgeKN0n66aXQ-5TlAkuEBGSOjEIcRh8PNEfiInHi_AaCMpvyYjCjPMhQCx-Tq_aOP7mz00unKWG9r46PV9supJpr7vq5N69ZaVVV_e0qOSlV5czbsCVk93L8tnuLl6-PzYr6MVSKSNkZgggGC4SlqofUsLF0kiTCszHiRCmSG5qniSgNktDQ8Y6XBQkGucxbACbnc9zbOfnbGt7Jee22qSm2N7bzEFKhIxIzvUNij2lnvnSll49a1cr1EkDtBMgiSO0FyEBQiF0N7l9em-Av8GgnA9R74idrObcOz__d9A_aMcE8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802737463</pqid></control><display><type>article</type><title>Why Do Nucleosomes Unwrap Asymmetrically?</title><source>MEDLINE</source><source>ACS Publications</source><creator>de Bruin, Lennart ; Tompitak, Marco ; Eslami-Mossallam, Behrouz ; Schiessel, Helmut</creator><creatorcontrib>de Bruin, Lennart ; Tompitak, Marco ; Eslami-Mossallam, Behrouz ; Schiessel, Helmut</creatorcontrib><description>Nucleosomes, DNA spools with a protein core, engage about three-quarters of eukaryotic DNA and play a critical role in chromosomal processes, ranging from gene regulation, recombination, and replication to chromosome condensation. For more than a decade, micromanipulation experiments where nucleosomes are put under tension, as well as the theoretical interpretations of these experiments, have deepened our understanding of the stability and dynamics of nucleosomes. Here we give a theoretical explanation for a surprising new experimental finding: nucleosomes wrapped onto the 601 positioning sequence (the sequence used in most laboratories) respond highly asymmetrically to external forces by always unwrapping from the same end. Using a computational nucleosome model, we show that this asymmetry can be explained by differences in the DNA mechanics of two very short stretches on the wrapped DNA portion. Our finding suggests that the physical properties of nucleosomes, here the response to forces, can be tuned locally by the choice of the underlying base-pair sequence. This leads to a new view of nucleosomes: a physically highly varied set of DNA–protein complexes whose properties can be tuned on evolutionary time scales to their specific function in the genomic context.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.6b00391</identifier><identifier>PMID: 26991771</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Base Pairing ; DNA - chemistry ; Histones - chemistry ; Humans ; Models, Molecular ; Nucleosomes - chemistry ; Nucleotides - chemistry ; Thermodynamics</subject><ispartof>The journal of physical chemistry. B, 2016-07, Vol.120 (26), p.5855-5863</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-10575010e681c7cc481ccd337e5f96d8715e2b8a6ac0092fe695fe1da0bcb5d33</citedby><cites>FETCH-LOGICAL-a373t-10575010e681c7cc481ccd337e5f96d8715e2b8a6ac0092fe695fe1da0bcb5d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.6b00391$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.6b00391$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26991771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Bruin, Lennart</creatorcontrib><creatorcontrib>Tompitak, Marco</creatorcontrib><creatorcontrib>Eslami-Mossallam, Behrouz</creatorcontrib><creatorcontrib>Schiessel, Helmut</creatorcontrib><title>Why Do Nucleosomes Unwrap Asymmetrically?</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Nucleosomes, DNA spools with a protein core, engage about three-quarters of eukaryotic DNA and play a critical role in chromosomal processes, ranging from gene regulation, recombination, and replication to chromosome condensation. For more than a decade, micromanipulation experiments where nucleosomes are put under tension, as well as the theoretical interpretations of these experiments, have deepened our understanding of the stability and dynamics of nucleosomes. Here we give a theoretical explanation for a surprising new experimental finding: nucleosomes wrapped onto the 601 positioning sequence (the sequence used in most laboratories) respond highly asymmetrically to external forces by always unwrapping from the same end. Using a computational nucleosome model, we show that this asymmetry can be explained by differences in the DNA mechanics of two very short stretches on the wrapped DNA portion. Our finding suggests that the physical properties of nucleosomes, here the response to forces, can be tuned locally by the choice of the underlying base-pair sequence. This leads to a new view of nucleosomes: a physically highly varied set of DNA–protein complexes whose properties can be tuned on evolutionary time scales to their specific function in the genomic context.</description><subject>Algorithms</subject><subject>Base Pairing</subject><subject>DNA - chemistry</subject><subject>Histones - chemistry</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleotides - chemistry</subject><subject>Thermodynamics</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EoqWwM6GMIJFy59R2MqGqfEoVLFSMluM4olVSBzsRyr_HpYGN4XQ3PO8r3UPIOcIUgeKN0n66aXQ-5TlAkuEBGSOjEIcRh8PNEfiInHi_AaCMpvyYjCjPMhQCx-Tq_aOP7mz00unKWG9r46PV9supJpr7vq5N69ZaVVV_e0qOSlV5czbsCVk93L8tnuLl6-PzYr6MVSKSNkZgggGC4SlqofUsLF0kiTCszHiRCmSG5qniSgNktDQ8Y6XBQkGucxbACbnc9zbOfnbGt7Jee22qSm2N7bzEFKhIxIzvUNij2lnvnSll49a1cr1EkDtBMgiSO0FyEBQiF0N7l9em-Av8GgnA9R74idrObcOz__d9A_aMcE8</recordid><startdate>20160707</startdate><enddate>20160707</enddate><creator>de Bruin, Lennart</creator><creator>Tompitak, Marco</creator><creator>Eslami-Mossallam, Behrouz</creator><creator>Schiessel, Helmut</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160707</creationdate><title>Why Do Nucleosomes Unwrap Asymmetrically?</title><author>de Bruin, Lennart ; Tompitak, Marco ; Eslami-Mossallam, Behrouz ; Schiessel, Helmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-10575010e681c7cc481ccd337e5f96d8715e2b8a6ac0092fe695fe1da0bcb5d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Base Pairing</topic><topic>DNA - chemistry</topic><topic>Histones - chemistry</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleotides - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Bruin, Lennart</creatorcontrib><creatorcontrib>Tompitak, Marco</creatorcontrib><creatorcontrib>Eslami-Mossallam, Behrouz</creatorcontrib><creatorcontrib>Schiessel, Helmut</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Bruin, Lennart</au><au>Tompitak, Marco</au><au>Eslami-Mossallam, Behrouz</au><au>Schiessel, Helmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why Do Nucleosomes Unwrap Asymmetrically?</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2016-07-07</date><risdate>2016</risdate><volume>120</volume><issue>26</issue><spage>5855</spage><epage>5863</epage><pages>5855-5863</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Nucleosomes, DNA spools with a protein core, engage about three-quarters of eukaryotic DNA and play a critical role in chromosomal processes, ranging from gene regulation, recombination, and replication to chromosome condensation. For more than a decade, micromanipulation experiments where nucleosomes are put under tension, as well as the theoretical interpretations of these experiments, have deepened our understanding of the stability and dynamics of nucleosomes. Here we give a theoretical explanation for a surprising new experimental finding: nucleosomes wrapped onto the 601 positioning sequence (the sequence used in most laboratories) respond highly asymmetrically to external forces by always unwrapping from the same end. Using a computational nucleosome model, we show that this asymmetry can be explained by differences in the DNA mechanics of two very short stretches on the wrapped DNA portion. Our finding suggests that the physical properties of nucleosomes, here the response to forces, can be tuned locally by the choice of the underlying base-pair sequence. This leads to a new view of nucleosomes: a physically highly varied set of DNA–protein complexes whose properties can be tuned on evolutionary time scales to their specific function in the genomic context.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26991771</pmid><doi>10.1021/acs.jpcb.6b00391</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2016-07, Vol.120 (26), p.5855-5863
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1802737463
source MEDLINE; ACS Publications
subjects Algorithms
Base Pairing
DNA - chemistry
Histones - chemistry
Humans
Models, Molecular
Nucleosomes - chemistry
Nucleotides - chemistry
Thermodynamics
title Why Do Nucleosomes Unwrap Asymmetrically?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20Do%20Nucleosomes%20Unwrap%20Asymmetrically?&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=de%20Bruin,%20Lennart&rft.date=2016-07-07&rft.volume=120&rft.issue=26&rft.spage=5855&rft.epage=5863&rft.pages=5855-5863&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.6b00391&rft_dat=%3Cproquest_cross%3E1802737463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1802737463&rft_id=info:pmid/26991771&rfr_iscdi=true