MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs
Background: MicroRNAs (miRNAs) are ∼21 nucleotide (nt) RNAs that regulate gene expression in plants and animals. Most known plant miRNAs target transcription factors that influence cell fate determination, and biological functions of miRNA-directed regulation have been reported for four of 15 known...
Gespeichert in:
Veröffentlicht in: | Current biology 2004-06, Vol.14 (12), p.1035-1046 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1046 |
---|---|
container_issue | 12 |
container_start_page | 1035 |
container_title | Current biology |
container_volume | 14 |
creator | Mallory, Allison C Dugas, Diana V Bartel, David P Bartel, Bonnie |
description | Background: MicroRNAs (miRNAs) are ∼21 nucleotide (nt) RNAs that regulate gene expression in plants and animals. Most known plant miRNAs target transcription factors that influence cell fate determination, and biological functions of miRNA-directed regulation have been reported for four of 15 known microRNA gene families: miR172, miR159, miR165, and miR168. Here, we identify a developmental role for miR164-directed regulation of NAC-domain genes, which encode a family of transcription factors that includes CUP-SHAPED COTYLEDON1 (CUC1) and CUC2.
Results: Expression of a miR164-resistant version of CUC1 mRNA from the CUC1 promoter causes alterations in Arabidopsis embryonic, vegetative, and floral development, including cotyledon orientation defects, reduction of rosette leaf petioles, dramatically misshapen rosette leaves, one to four extra petals, and one or two missing sepals. Reciprocally, constitutive overexpression of miR164 recapitulates cuc1 cuc2 double mutant phenotypes, including cotyledon and floral organ fusions. miR164 overexpression also leads to phenotypes not previously observed in cuc1 cuc2 mutants, including leaf and stem fusions. These likely reflect the misregulation of other NAC-domain mRNAs, including NAC1, At5g07680, and At5g61430, for which miR164-directed cleavage products were detected.
Conclusions: These results demonstrate that miR164-directed regulation of CUC1 is necessary for normal embryonic, vegetative, and floral development. They also show that proper miR164 dosage or localization is required for separation of adjacent embryonic, vegetative, and floral organs, thus implicating miR164 as a common regulatory component of the molecular circuitry that controls the separation of different developing organs and thereby exposes a posttranscriptional layer of NAC-domain gene regulation during plant development. |
doi_str_mv | 10.1016/j.cub.2004.06.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18027311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982204004269</els_id><sourcerecordid>18027311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-97a65aa9e068dced6d3de10ed94a3d8180944a988adf9abd6edb393164e2894f3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhAdggr1g1wXY8nlisRkOHVuqfSmFr3dg3I4-SeGonlfoSPDNuZ9TuWN3Ndz7pnkPIZ85Kzrj6ti3t1JSCMVkyVTIh3pAZrxe6YFLO35IZ04oVuhbiiHxIacsYF7VW78kRnwsmtFYz8vfS2xhur5b0FjdTB6MPAw0tvVquih-hBz_QO4gbHBM9T5m5n3xER9sQ6U0MO4x0HWK_j8Hg6C_cQXyxLN0WLA4jPe2b-BgGb0_oH8y2TDzgyXNi3YUIHb2OGxjSR_KuhS7hp8M9Jr_Xp3ers-Li-uf5anlRWFnrsdALUHMAjUzVzqJTrnLIGTotoXI1r5mWEnRdg2s1NE6haypdcSUxNyDb6ph83Xt3MdxPmEbT-2Sx62DAMCWTDWJRcZ5BvgdzSylFbM0u-h7io-HMPI1gtiaPYJ5GMEyZPELOfDnIp6ZH95o4tJ6B73sA84sPHqNJ1uOQH8nl2tG44P-j_weeEJjX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18027311</pqid></control><display><type>article</type><title>MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mallory, Allison C ; Dugas, Diana V ; Bartel, David P ; Bartel, Bonnie</creator><creatorcontrib>Mallory, Allison C ; Dugas, Diana V ; Bartel, David P ; Bartel, Bonnie</creatorcontrib><description>Background: MicroRNAs (miRNAs) are ∼21 nucleotide (nt) RNAs that regulate gene expression in plants and animals. Most known plant miRNAs target transcription factors that influence cell fate determination, and biological functions of miRNA-directed regulation have been reported for four of 15 known microRNA gene families: miR172, miR159, miR165, and miR168. Here, we identify a developmental role for miR164-directed regulation of NAC-domain genes, which encode a family of transcription factors that includes CUP-SHAPED COTYLEDON1 (CUC1) and CUC2.
Results: Expression of a miR164-resistant version of CUC1 mRNA from the CUC1 promoter causes alterations in Arabidopsis embryonic, vegetative, and floral development, including cotyledon orientation defects, reduction of rosette leaf petioles, dramatically misshapen rosette leaves, one to four extra petals, and one or two missing sepals. Reciprocally, constitutive overexpression of miR164 recapitulates cuc1 cuc2 double mutant phenotypes, including cotyledon and floral organ fusions. miR164 overexpression also leads to phenotypes not previously observed in cuc1 cuc2 mutants, including leaf and stem fusions. These likely reflect the misregulation of other NAC-domain mRNAs, including NAC1, At5g07680, and At5g61430, for which miR164-directed cleavage products were detected.
Conclusions: These results demonstrate that miR164-directed regulation of CUC1 is necessary for normal embryonic, vegetative, and floral development. They also show that proper miR164 dosage or localization is required for separation of adjacent embryonic, vegetative, and floral organs, thus implicating miR164 as a common regulatory component of the molecular circuitry that controls the separation of different developing organs and thereby exposes a posttranscriptional layer of NAC-domain gene regulation during plant development.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2004.06.022</identifier><identifier>PMID: 15202996</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Arabidopsis ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Base Sequence ; DNA Primers ; Gene Components ; Gene Expression Regulation, Plant ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Nucleic Acid Amplification Techniques ; Phenotype ; Plant Structures - embryology ; Plant Structures - genetics ; Plant Structures - metabolism ; Plant Structures - ultrastructure ; Plants, Genetically Modified ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Transformation, Genetic</subject><ispartof>Current biology, 2004-06, Vol.14 (12), p.1035-1046</ispartof><rights>2004 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-97a65aa9e068dced6d3de10ed94a3d8180944a988adf9abd6edb393164e2894f3</citedby><cites>FETCH-LOGICAL-c489t-97a65aa9e068dced6d3de10ed94a3d8180944a988adf9abd6edb393164e2894f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982204004269$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15202996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mallory, Allison C</creatorcontrib><creatorcontrib>Dugas, Diana V</creatorcontrib><creatorcontrib>Bartel, David P</creatorcontrib><creatorcontrib>Bartel, Bonnie</creatorcontrib><title>MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Background: MicroRNAs (miRNAs) are ∼21 nucleotide (nt) RNAs that regulate gene expression in plants and animals. Most known plant miRNAs target transcription factors that influence cell fate determination, and biological functions of miRNA-directed regulation have been reported for four of 15 known microRNA gene families: miR172, miR159, miR165, and miR168. Here, we identify a developmental role for miR164-directed regulation of NAC-domain genes, which encode a family of transcription factors that includes CUP-SHAPED COTYLEDON1 (CUC1) and CUC2.
Results: Expression of a miR164-resistant version of CUC1 mRNA from the CUC1 promoter causes alterations in Arabidopsis embryonic, vegetative, and floral development, including cotyledon orientation defects, reduction of rosette leaf petioles, dramatically misshapen rosette leaves, one to four extra petals, and one or two missing sepals. Reciprocally, constitutive overexpression of miR164 recapitulates cuc1 cuc2 double mutant phenotypes, including cotyledon and floral organ fusions. miR164 overexpression also leads to phenotypes not previously observed in cuc1 cuc2 mutants, including leaf and stem fusions. These likely reflect the misregulation of other NAC-domain mRNAs, including NAC1, At5g07680, and At5g61430, for which miR164-directed cleavage products were detected.
Conclusions: These results demonstrate that miR164-directed regulation of CUC1 is necessary for normal embryonic, vegetative, and floral development. They also show that proper miR164 dosage or localization is required for separation of adjacent embryonic, vegetative, and floral organs, thus implicating miR164 as a common regulatory component of the molecular circuitry that controls the separation of different developing organs and thereby exposes a posttranscriptional layer of NAC-domain gene regulation during plant development.</description><subject>Amino Acid Sequence</subject><subject>Arabidopsis</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Base Sequence</subject><subject>DNA Primers</subject><subject>Gene Components</subject><subject>Gene Expression Regulation, Plant</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Microscopy, Electron, Scanning</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Nucleic Acid Amplification Techniques</subject><subject>Phenotype</subject><subject>Plant Structures - embryology</subject><subject>Plant Structures - genetics</subject><subject>Plant Structures - metabolism</subject><subject>Plant Structures - ultrastructure</subject><subject>Plants, Genetically Modified</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Transformation, Genetic</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EokPhAdggr1g1wXY8nlisRkOHVuqfSmFr3dg3I4-SeGonlfoSPDNuZ9TuWN3Ndz7pnkPIZ85Kzrj6ti3t1JSCMVkyVTIh3pAZrxe6YFLO35IZ04oVuhbiiHxIacsYF7VW78kRnwsmtFYz8vfS2xhur5b0FjdTB6MPAw0tvVquih-hBz_QO4gbHBM9T5m5n3xER9sQ6U0MO4x0HWK_j8Hg6C_cQXyxLN0WLA4jPe2b-BgGb0_oH8y2TDzgyXNi3YUIHb2OGxjSR_KuhS7hp8M9Jr_Xp3ers-Li-uf5anlRWFnrsdALUHMAjUzVzqJTrnLIGTotoXI1r5mWEnRdg2s1NE6haypdcSUxNyDb6ph83Xt3MdxPmEbT-2Sx62DAMCWTDWJRcZ5BvgdzSylFbM0u-h7io-HMPI1gtiaPYJ5GMEyZPELOfDnIp6ZH95o4tJ6B73sA84sPHqNJ1uOQH8nl2tG44P-j_weeEJjX</recordid><startdate>20040622</startdate><enddate>20040622</enddate><creator>Mallory, Allison C</creator><creator>Dugas, Diana V</creator><creator>Bartel, David P</creator><creator>Bartel, Bonnie</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20040622</creationdate><title>MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs</title><author>Mallory, Allison C ; Dugas, Diana V ; Bartel, David P ; Bartel, Bonnie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-97a65aa9e068dced6d3de10ed94a3d8180944a988adf9abd6edb393164e2894f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Amino Acid Sequence</topic><topic>Arabidopsis</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Base Sequence</topic><topic>DNA Primers</topic><topic>Gene Components</topic><topic>Gene Expression Regulation, Plant</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Microscopy, Electron, Scanning</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Nucleic Acid Amplification Techniques</topic><topic>Phenotype</topic><topic>Plant Structures - embryology</topic><topic>Plant Structures - genetics</topic><topic>Plant Structures - metabolism</topic><topic>Plant Structures - ultrastructure</topic><topic>Plants, Genetically Modified</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Transformation, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallory, Allison C</creatorcontrib><creatorcontrib>Dugas, Diana V</creatorcontrib><creatorcontrib>Bartel, David P</creatorcontrib><creatorcontrib>Bartel, Bonnie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallory, Allison C</au><au>Dugas, Diana V</au><au>Bartel, David P</au><au>Bartel, Bonnie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2004-06-22</date><risdate>2004</risdate><volume>14</volume><issue>12</issue><spage>1035</spage><epage>1046</epage><pages>1035-1046</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Background: MicroRNAs (miRNAs) are ∼21 nucleotide (nt) RNAs that regulate gene expression in plants and animals. Most known plant miRNAs target transcription factors that influence cell fate determination, and biological functions of miRNA-directed regulation have been reported for four of 15 known microRNA gene families: miR172, miR159, miR165, and miR168. Here, we identify a developmental role for miR164-directed regulation of NAC-domain genes, which encode a family of transcription factors that includes CUP-SHAPED COTYLEDON1 (CUC1) and CUC2.
Results: Expression of a miR164-resistant version of CUC1 mRNA from the CUC1 promoter causes alterations in Arabidopsis embryonic, vegetative, and floral development, including cotyledon orientation defects, reduction of rosette leaf petioles, dramatically misshapen rosette leaves, one to four extra petals, and one or two missing sepals. Reciprocally, constitutive overexpression of miR164 recapitulates cuc1 cuc2 double mutant phenotypes, including cotyledon and floral organ fusions. miR164 overexpression also leads to phenotypes not previously observed in cuc1 cuc2 mutants, including leaf and stem fusions. These likely reflect the misregulation of other NAC-domain mRNAs, including NAC1, At5g07680, and At5g61430, for which miR164-directed cleavage products were detected.
Conclusions: These results demonstrate that miR164-directed regulation of CUC1 is necessary for normal embryonic, vegetative, and floral development. They also show that proper miR164 dosage or localization is required for separation of adjacent embryonic, vegetative, and floral organs, thus implicating miR164 as a common regulatory component of the molecular circuitry that controls the separation of different developing organs and thereby exposes a posttranscriptional layer of NAC-domain gene regulation during plant development.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>15202996</pmid><doi>10.1016/j.cub.2004.06.022</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2004-06, Vol.14 (12), p.1035-1046 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_proquest_miscellaneous_18027311 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amino Acid Sequence Arabidopsis Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Base Sequence DNA Primers Gene Components Gene Expression Regulation, Plant MicroRNAs - genetics MicroRNAs - metabolism Microscopy, Electron, Scanning Molecular Sequence Data Mutagenesis, Site-Directed Nucleic Acid Amplification Techniques Phenotype Plant Structures - embryology Plant Structures - genetics Plant Structures - metabolism Plant Structures - ultrastructure Plants, Genetically Modified Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - genetics RNA, Messenger - metabolism Transformation, Genetic |
title | MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA%20Regulation%20of%20NAC-Domain%20Targets%20Is%20Required%20for%20Proper%20Formation%20and%20Separation%20of%20Adjacent%20Embryonic,%20Vegetative,%20and%20Floral%20Organs&rft.jtitle=Current%20biology&rft.au=Mallory,%20Allison%20C&rft.date=2004-06-22&rft.volume=14&rft.issue=12&rft.spage=1035&rft.epage=1046&rft.pages=1035-1046&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2004.06.022&rft_dat=%3Cproquest_cross%3E18027311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18027311&rft_id=info:pmid/15202996&rft_els_id=S0960982204004269&rfr_iscdi=true |