Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells

Microbial electrolysis cell (MECs) were investigated as a promising technology to manage waste activated sludge (WAS) reduction and bio-methane generation. The effect of WAS concentration on the MECs performance was discussed. At the optimal concentration of 15gCOD/L, maximum methane yield of MECs f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2015-01, Vol.175, p.68-74
Hauptverfasser: Sun, Rui, Zhou, Aijuan, Jia, Jianna, Liang, Qing, Liu, Qian, Xing, Defeng, Ren, Nanqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue
container_start_page 68
container_title Bioresource technology
container_volume 175
creator Sun, Rui
Zhou, Aijuan
Jia, Jianna
Liang, Qing
Liu, Qian
Xing, Defeng
Ren, Nanqi
description Microbial electrolysis cell (MECs) were investigated as a promising technology to manage waste activated sludge (WAS) reduction and bio-methane generation. The effect of WAS concentration on the MECs performance was discussed. At the optimal concentration of 15gCOD/L, maximum methane yield of MECs fed with alkaline pretreated WAS (A-WAS) were achieved with the value of 77.13±2.52LCH4/kg-COD on Day 3, which had been improved by 1.5-fold compared with MECs fed with raw WAS (R-WAS), while that was negligible in open circuit controls. Efficient sludge reduction was also obtained in terms of TCOD, total protein, TSS and VSS removal. Pyrosequencing revealed the dominance of exoelectrogen Geobacter and hydrogen-producing bacteria Petrimonas in MECs fed with WAS. Methanocorpusculum with the capacity of methane generation using CO2 and H2 also showed overwhelming dominance (96.01%). The large proportions of Petrimonas and Methanocorpusculum indicated the occurrence of hydrogenotrophic methanogenesis in our methane-producing MECs.
doi_str_mv 10.1016/j.biortech.2014.10.052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800703280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800703280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-b92bd5e2e95e72dd10d8393a60912ce788f0454e8ad6c61ae8ebf4f0b314167d3</originalsourceid><addsrcrecordid>eNqNkctuFDEQRS0EIkPgFyIv2fRQfruXaBQCUqRsknXLbVfPeNSPYLuJhp_IL9PDJFF2sCrp6tatxyHkgsGaAdNf9us2Tqmg3605MLmIa1D8DVkxa0TFa6PfkhXUGiqruDwjH3LeA4Bghr8nZ1xJVVtQK_K42bnkfMEUf7sSp5FOHR2w7NyI9D5NYfZ_VTcGOkSfpja6nvppGOYxlgPNu9iVTMOc4rilDy4XpEtc_OUKBpr7OWyRBtwmF07xcXyVgz36kqb-kGOmHvs-fyTvOtdn_PRUz8ndt8vbzffq-ubqx-brdeWlFKVqa94GhRxrhYaHwCBYUQunoWbco7G2A6kkWhe018yhxbaTHbSCSaZNEOfk8yl3ufHnjLk0Q8zHDZa7pzk3zAIYENzCv61aMWEtt-o_rNIAaMPlYtUn6_KLnBN2zX2Kg0uHhkFzRNzsm2fEzRHxUV8QL40XTzPmdsDw0vbMVPwBl4OooA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647006724</pqid></control><display><type>article</type><title>Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sun, Rui ; Zhou, Aijuan ; Jia, Jianna ; Liang, Qing ; Liu, Qian ; Xing, Defeng ; Ren, Nanqi</creator><creatorcontrib>Sun, Rui ; Zhou, Aijuan ; Jia, Jianna ; Liang, Qing ; Liu, Qian ; Xing, Defeng ; Ren, Nanqi</creatorcontrib><description>Microbial electrolysis cell (MECs) were investigated as a promising technology to manage waste activated sludge (WAS) reduction and bio-methane generation. The effect of WAS concentration on the MECs performance was discussed. At the optimal concentration of 15gCOD/L, maximum methane yield of MECs fed with alkaline pretreated WAS (A-WAS) were achieved with the value of 77.13±2.52LCH4/kg-COD on Day 3, which had been improved by 1.5-fold compared with MECs fed with raw WAS (R-WAS), while that was negligible in open circuit controls. Efficient sludge reduction was also obtained in terms of TCOD, total protein, TSS and VSS removal. Pyrosequencing revealed the dominance of exoelectrogen Geobacter and hydrogen-producing bacteria Petrimonas in MECs fed with WAS. Methanocorpusculum with the capacity of methane generation using CO2 and H2 also showed overwhelming dominance (96.01%). The large proportions of Petrimonas and Methanocorpusculum indicated the occurrence of hydrogenotrophic methanogenesis in our methane-producing MECs.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2014.10.052</identifier><identifier>PMID: 25459805</identifier><language>eng</language><publisher>England</publisher><subject>Activated sludge ; Bacteria ; Bacteria - metabolism ; Bioreactors - microbiology ; Dominance ; Electrolysis ; Electrolytic cells ; Geobacter ; Methane ; Methane - biosynthesis ; Methanocorpusculum ; Methanomicrobiales ; Microorganisms ; Refuse Disposal - methods ; Sewage - microbiology ; Wastes</subject><ispartof>Bioresource technology, 2015-01, Vol.175, p.68-74</ispartof><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-b92bd5e2e95e72dd10d8393a60912ce788f0454e8ad6c61ae8ebf4f0b314167d3</citedby><cites>FETCH-LOGICAL-c443t-b92bd5e2e95e72dd10d8393a60912ce788f0454e8ad6c61ae8ebf4f0b314167d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25459805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Zhou, Aijuan</creatorcontrib><creatorcontrib>Jia, Jianna</creatorcontrib><creatorcontrib>Liang, Qing</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Xing, Defeng</creatorcontrib><creatorcontrib>Ren, Nanqi</creatorcontrib><title>Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>Microbial electrolysis cell (MECs) were investigated as a promising technology to manage waste activated sludge (WAS) reduction and bio-methane generation. The effect of WAS concentration on the MECs performance was discussed. At the optimal concentration of 15gCOD/L, maximum methane yield of MECs fed with alkaline pretreated WAS (A-WAS) were achieved with the value of 77.13±2.52LCH4/kg-COD on Day 3, which had been improved by 1.5-fold compared with MECs fed with raw WAS (R-WAS), while that was negligible in open circuit controls. Efficient sludge reduction was also obtained in terms of TCOD, total protein, TSS and VSS removal. Pyrosequencing revealed the dominance of exoelectrogen Geobacter and hydrogen-producing bacteria Petrimonas in MECs fed with WAS. Methanocorpusculum with the capacity of methane generation using CO2 and H2 also showed overwhelming dominance (96.01%). The large proportions of Petrimonas and Methanocorpusculum indicated the occurrence of hydrogenotrophic methanogenesis in our methane-producing MECs.</description><subject>Activated sludge</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bioreactors - microbiology</subject><subject>Dominance</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Geobacter</subject><subject>Methane</subject><subject>Methane - biosynthesis</subject><subject>Methanocorpusculum</subject><subject>Methanomicrobiales</subject><subject>Microorganisms</subject><subject>Refuse Disposal - methods</subject><subject>Sewage - microbiology</subject><subject>Wastes</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctuFDEQRS0EIkPgFyIv2fRQfruXaBQCUqRsknXLbVfPeNSPYLuJhp_IL9PDJFF2sCrp6tatxyHkgsGaAdNf9us2Tqmg3605MLmIa1D8DVkxa0TFa6PfkhXUGiqruDwjH3LeA4Bghr8nZ1xJVVtQK_K42bnkfMEUf7sSp5FOHR2w7NyI9D5NYfZ_VTcGOkSfpja6nvppGOYxlgPNu9iVTMOc4rilDy4XpEtc_OUKBpr7OWyRBtwmF07xcXyVgz36kqb-kGOmHvs-fyTvOtdn_PRUz8ndt8vbzffq-ubqx-brdeWlFKVqa94GhRxrhYaHwCBYUQunoWbco7G2A6kkWhe018yhxbaTHbSCSaZNEOfk8yl3ufHnjLk0Q8zHDZa7pzk3zAIYENzCv61aMWEtt-o_rNIAaMPlYtUn6_KLnBN2zX2Kg0uHhkFzRNzsm2fEzRHxUV8QL40XTzPmdsDw0vbMVPwBl4OooA</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Sun, Rui</creator><creator>Zhou, Aijuan</creator><creator>Jia, Jianna</creator><creator>Liang, Qing</creator><creator>Liu, Qian</creator><creator>Xing, Defeng</creator><creator>Ren, Nanqi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>201501</creationdate><title>Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells</title><author>Sun, Rui ; Zhou, Aijuan ; Jia, Jianna ; Liang, Qing ; Liu, Qian ; Xing, Defeng ; Ren, Nanqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-b92bd5e2e95e72dd10d8393a60912ce788f0454e8ad6c61ae8ebf4f0b314167d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Activated sludge</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bioreactors - microbiology</topic><topic>Dominance</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Geobacter</topic><topic>Methane</topic><topic>Methane - biosynthesis</topic><topic>Methanocorpusculum</topic><topic>Methanomicrobiales</topic><topic>Microorganisms</topic><topic>Refuse Disposal - methods</topic><topic>Sewage - microbiology</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Rui</creatorcontrib><creatorcontrib>Zhou, Aijuan</creatorcontrib><creatorcontrib>Jia, Jianna</creatorcontrib><creatorcontrib>Liang, Qing</creatorcontrib><creatorcontrib>Liu, Qian</creatorcontrib><creatorcontrib>Xing, Defeng</creatorcontrib><creatorcontrib>Ren, Nanqi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Rui</au><au>Zhou, Aijuan</au><au>Jia, Jianna</au><au>Liang, Qing</au><au>Liu, Qian</au><au>Xing, Defeng</au><au>Ren, Nanqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2015-01</date><risdate>2015</risdate><volume>175</volume><spage>68</spage><epage>74</epage><pages>68-74</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>Microbial electrolysis cell (MECs) were investigated as a promising technology to manage waste activated sludge (WAS) reduction and bio-methane generation. The effect of WAS concentration on the MECs performance was discussed. At the optimal concentration of 15gCOD/L, maximum methane yield of MECs fed with alkaline pretreated WAS (A-WAS) were achieved with the value of 77.13±2.52LCH4/kg-COD on Day 3, which had been improved by 1.5-fold compared with MECs fed with raw WAS (R-WAS), while that was negligible in open circuit controls. Efficient sludge reduction was also obtained in terms of TCOD, total protein, TSS and VSS removal. Pyrosequencing revealed the dominance of exoelectrogen Geobacter and hydrogen-producing bacteria Petrimonas in MECs fed with WAS. Methanocorpusculum with the capacity of methane generation using CO2 and H2 also showed overwhelming dominance (96.01%). The large proportions of Petrimonas and Methanocorpusculum indicated the occurrence of hydrogenotrophic methanogenesis in our methane-producing MECs.</abstract><cop>England</cop><pmid>25459805</pmid><doi>10.1016/j.biortech.2014.10.052</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2015-01, Vol.175, p.68-74
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1800703280
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Activated sludge
Bacteria
Bacteria - metabolism
Bioreactors - microbiology
Dominance
Electrolysis
Electrolytic cells
Geobacter
Methane
Methane - biosynthesis
Methanocorpusculum
Methanomicrobiales
Microorganisms
Refuse Disposal - methods
Sewage - microbiology
Wastes
title Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20methane%20production%20and%20microbial%20community%20shifts%20during%20waste%20activated%20sludge%20degradation%20in%20microbial%20electrolysis%20cells&rft.jtitle=Bioresource%20technology&rft.au=Sun,%20Rui&rft.date=2015-01&rft.volume=175&rft.spage=68&rft.epage=74&rft.pages=68-74&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2014.10.052&rft_dat=%3Cproquest_cross%3E1800703280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647006724&rft_id=info:pmid/25459805&rfr_iscdi=true