Difluorobenzothiadiazole-Based Small-Molecule Organic Solar Cells with 8.7% Efficiency by Tuning of π-Conjugated Spacers and Solvent Vapor Annealing
The synthesis of a series of tetrafluorine‐substituted, wide‐bandgap, small molecules consisting of various π‐conjugated spacers (furan, thiophene, selenophene) between indacenodithiophene as the electron‐donating core and the electron‐deficient difluorobenzothiadiazole unit is reported and the effe...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2016-03, Vol.26 (11), p.1803-1812 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1812 |
---|---|
container_issue | 11 |
container_start_page | 1803 |
container_title | Advanced functional materials |
container_volume | 26 |
creator | Wang, Jin-Liang Xiao, Fei Yan, Jun Wu, Zhuo Liu, Kai-Kai Chang, Zheng-Feng Zhang, Ru-Bo Chen, Hui Wu, Hong-Bin Cao, Yong |
description | The synthesis of a series of tetrafluorine‐substituted, wide‐bandgap, small molecules consisting of various π‐conjugated spacers (furan, thiophene, selenophene) between indacenodithiophene as the electron‐donating core and the electron‐deficient difluorobenzothiadiazole unit is reported and the effect of the π‐conjugated spacers on the photovoltaic properties is investigated. The alteration of the π‐conjugated spacer enables fine‐tuning of the photophysical properties and energy levels of the small molecules, and allows the adjustment of the charge‐transport properties, the morphology of the photoactive films, as well as their photovoltaic properties. Moreover, most of these devices exhibit superior device performances after CH2Cl2 solvent annealing than without annealing, with a high fill factor (0.70–0.75 for all cases). Notably, the devices based on the new molecule BIT4FTh (with thiophene as the spacer) show an outstanding PCE of 8.7% (with an impressive FF of 0.75), considering its wide‐bandgap (1.81 eV), which is among the highest efficiencies reported so far for small‐molecules‐based solar cells. The morphologies of the photoactive layers with/without CH2Cl2 solvent annealing are characterized by atomic force microscopy, transmission electron microscopy and two‐dimensional grazing incidence X‐ray diffraction analysis. The results reported here clearly indicate that highly efficient small‐molecules‐based solar cells can be achieved through rational design of their molecular structure and optimization of the phase‐separated morphology via an adapted solvent–vapor annealing process.
A series of wide‐bandgap small‐molecules are synthesized and the effect of the various π‐conjugated spacers and of an additional solvent–vapor annealing process on their photovoltaic properties is demonstrated. The devices based on BIT4FTh (with thiophene as a spacer) shows an outstanding PCE of 8.7% (with an impressive FF of 0.75), which is among the highest efficiencies reported for devices based on wide‐bandgap small‐molecules. |
doi_str_mv | 10.1002/adfm.201505020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800504162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800504162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3600-fe3258acb359eebf3fb92a79bd505fa89819ea99f077d64c95b6a4fc5db441bb3</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhlcIJErplbMvSFw22Ov9PIbtp9pS0YTCzRp7x6mLY6f2Lm166p_gd_GX2Cgo4sZpRqP3eaV5kuQdoxNGafYROr2cZJQVtKAZfZHssZKVKadZ_XK3s--vkzcx3lHKqorne8mvQ6Pt4IOX6J58f2ugM_DkLaafIGJHZkuwNr0cD2qwSK7CApxRZOYtBNKitZE8mP6W1JPqPTnS2iiDTq2JXJP54IxbEK_J7-e09e5uWEC_qVyBwhAJuG7T8xNdT25g5QOZOodgR-ht8kqDjXjwd-4nX4-P5u1penF1ctZOL1LFS0pTjTwralCSFw2i1FzLJoOqkd3oQEPd1KxBaBpNq6orc9UUsoRcq6KTec6k5PvJh23vKvj7AWMvliaq8Stw6IcoWE1HmTkrszE62UZV8DEG1GIVzBLCWjAqNv7Fxr_Y-R-BZgs8GIvr_6TF9PD48l823bIm9vi4YyH8EGXFq0J8-3wiyvObdj47vRZf-B9KOZvx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800504162</pqid></control><display><type>article</type><title>Difluorobenzothiadiazole-Based Small-Molecule Organic Solar Cells with 8.7% Efficiency by Tuning of π-Conjugated Spacers and Solvent Vapor Annealing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Jin-Liang ; Xiao, Fei ; Yan, Jun ; Wu, Zhuo ; Liu, Kai-Kai ; Chang, Zheng-Feng ; Zhang, Ru-Bo ; Chen, Hui ; Wu, Hong-Bin ; Cao, Yong</creator><creatorcontrib>Wang, Jin-Liang ; Xiao, Fei ; Yan, Jun ; Wu, Zhuo ; Liu, Kai-Kai ; Chang, Zheng-Feng ; Zhang, Ru-Bo ; Chen, Hui ; Wu, Hong-Bin ; Cao, Yong</creatorcontrib><description>The synthesis of a series of tetrafluorine‐substituted, wide‐bandgap, small molecules consisting of various π‐conjugated spacers (furan, thiophene, selenophene) between indacenodithiophene as the electron‐donating core and the electron‐deficient difluorobenzothiadiazole unit is reported and the effect of the π‐conjugated spacers on the photovoltaic properties is investigated. The alteration of the π‐conjugated spacer enables fine‐tuning of the photophysical properties and energy levels of the small molecules, and allows the adjustment of the charge‐transport properties, the morphology of the photoactive films, as well as their photovoltaic properties. Moreover, most of these devices exhibit superior device performances after CH2Cl2 solvent annealing than without annealing, with a high fill factor (0.70–0.75 for all cases). Notably, the devices based on the new molecule BIT4FTh (with thiophene as the spacer) show an outstanding PCE of 8.7% (with an impressive FF of 0.75), considering its wide‐bandgap (1.81 eV), which is among the highest efficiencies reported so far for small‐molecules‐based solar cells. The morphologies of the photoactive layers with/without CH2Cl2 solvent annealing are characterized by atomic force microscopy, transmission electron microscopy and two‐dimensional grazing incidence X‐ray diffraction analysis. The results reported here clearly indicate that highly efficient small‐molecules‐based solar cells can be achieved through rational design of their molecular structure and optimization of the phase‐separated morphology via an adapted solvent–vapor annealing process.
A series of wide‐bandgap small‐molecules are synthesized and the effect of the various π‐conjugated spacers and of an additional solvent–vapor annealing process on their photovoltaic properties is demonstrated. The devices based on BIT4FTh (with thiophene as a spacer) shows an outstanding PCE of 8.7% (with an impressive FF of 0.75), which is among the highest efficiencies reported for devices based on wide‐bandgap small‐molecules.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201505020</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Annealing ; Devices ; Morphology ; organic solar cells ; Photovoltaic cells ; small molecules ; Solar cells ; Solvents ; Spacers ; structure-property relationships ; Thiophenes ; π-conjugated spacers</subject><ispartof>Advanced functional materials, 2016-03, Vol.26 (11), p.1803-1812</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3600-fe3258acb359eebf3fb92a79bd505fa89819ea99f077d64c95b6a4fc5db441bb3</citedby><cites>FETCH-LOGICAL-c3600-fe3258acb359eebf3fb92a79bd505fa89819ea99f077d64c95b6a4fc5db441bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201505020$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201505020$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Wang, Jin-Liang</creatorcontrib><creatorcontrib>Xiao, Fei</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wu, Zhuo</creatorcontrib><creatorcontrib>Liu, Kai-Kai</creatorcontrib><creatorcontrib>Chang, Zheng-Feng</creatorcontrib><creatorcontrib>Zhang, Ru-Bo</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Wu, Hong-Bin</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><title>Difluorobenzothiadiazole-Based Small-Molecule Organic Solar Cells with 8.7% Efficiency by Tuning of π-Conjugated Spacers and Solvent Vapor Annealing</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The synthesis of a series of tetrafluorine‐substituted, wide‐bandgap, small molecules consisting of various π‐conjugated spacers (furan, thiophene, selenophene) between indacenodithiophene as the electron‐donating core and the electron‐deficient difluorobenzothiadiazole unit is reported and the effect of the π‐conjugated spacers on the photovoltaic properties is investigated. The alteration of the π‐conjugated spacer enables fine‐tuning of the photophysical properties and energy levels of the small molecules, and allows the adjustment of the charge‐transport properties, the morphology of the photoactive films, as well as their photovoltaic properties. Moreover, most of these devices exhibit superior device performances after CH2Cl2 solvent annealing than without annealing, with a high fill factor (0.70–0.75 for all cases). Notably, the devices based on the new molecule BIT4FTh (with thiophene as the spacer) show an outstanding PCE of 8.7% (with an impressive FF of 0.75), considering its wide‐bandgap (1.81 eV), which is among the highest efficiencies reported so far for small‐molecules‐based solar cells. The morphologies of the photoactive layers with/without CH2Cl2 solvent annealing are characterized by atomic force microscopy, transmission electron microscopy and two‐dimensional grazing incidence X‐ray diffraction analysis. The results reported here clearly indicate that highly efficient small‐molecules‐based solar cells can be achieved through rational design of their molecular structure and optimization of the phase‐separated morphology via an adapted solvent–vapor annealing process.
A series of wide‐bandgap small‐molecules are synthesized and the effect of the various π‐conjugated spacers and of an additional solvent–vapor annealing process on their photovoltaic properties is demonstrated. The devices based on BIT4FTh (with thiophene as a spacer) shows an outstanding PCE of 8.7% (with an impressive FF of 0.75), which is among the highest efficiencies reported for devices based on wide‐bandgap small‐molecules.</description><subject>Annealing</subject><subject>Devices</subject><subject>Morphology</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>small molecules</subject><subject>Solar cells</subject><subject>Solvents</subject><subject>Spacers</subject><subject>structure-property relationships</subject><subject>Thiophenes</subject><subject>π-conjugated spacers</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vEzEQhlcIJErplbMvSFw22Ov9PIbtp9pS0YTCzRp7x6mLY6f2Lm166p_gd_GX2Cgo4sZpRqP3eaV5kuQdoxNGafYROr2cZJQVtKAZfZHssZKVKadZ_XK3s--vkzcx3lHKqorne8mvQ6Pt4IOX6J58f2ugM_DkLaafIGJHZkuwNr0cD2qwSK7CApxRZOYtBNKitZE8mP6W1JPqPTnS2iiDTq2JXJP54IxbEK_J7-e09e5uWEC_qVyBwhAJuG7T8xNdT25g5QOZOodgR-ht8kqDjXjwd-4nX4-P5u1penF1ctZOL1LFS0pTjTwralCSFw2i1FzLJoOqkd3oQEPd1KxBaBpNq6orc9UUsoRcq6KTec6k5PvJh23vKvj7AWMvliaq8Stw6IcoWE1HmTkrszE62UZV8DEG1GIVzBLCWjAqNv7Fxr_Y-R-BZgs8GIvr_6TF9PD48l823bIm9vi4YyH8EGXFq0J8-3wiyvObdj47vRZf-B9KOZvx</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Wang, Jin-Liang</creator><creator>Xiao, Fei</creator><creator>Yan, Jun</creator><creator>Wu, Zhuo</creator><creator>Liu, Kai-Kai</creator><creator>Chang, Zheng-Feng</creator><creator>Zhang, Ru-Bo</creator><creator>Chen, Hui</creator><creator>Wu, Hong-Bin</creator><creator>Cao, Yong</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160301</creationdate><title>Difluorobenzothiadiazole-Based Small-Molecule Organic Solar Cells with 8.7% Efficiency by Tuning of π-Conjugated Spacers and Solvent Vapor Annealing</title><author>Wang, Jin-Liang ; Xiao, Fei ; Yan, Jun ; Wu, Zhuo ; Liu, Kai-Kai ; Chang, Zheng-Feng ; Zhang, Ru-Bo ; Chen, Hui ; Wu, Hong-Bin ; Cao, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3600-fe3258acb359eebf3fb92a79bd505fa89819ea99f077d64c95b6a4fc5db441bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annealing</topic><topic>Devices</topic><topic>Morphology</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>small molecules</topic><topic>Solar cells</topic><topic>Solvents</topic><topic>Spacers</topic><topic>structure-property relationships</topic><topic>Thiophenes</topic><topic>π-conjugated spacers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jin-Liang</creatorcontrib><creatorcontrib>Xiao, Fei</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Wu, Zhuo</creatorcontrib><creatorcontrib>Liu, Kai-Kai</creatorcontrib><creatorcontrib>Chang, Zheng-Feng</creatorcontrib><creatorcontrib>Zhang, Ru-Bo</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Wu, Hong-Bin</creatorcontrib><creatorcontrib>Cao, Yong</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jin-Liang</au><au>Xiao, Fei</au><au>Yan, Jun</au><au>Wu, Zhuo</au><au>Liu, Kai-Kai</au><au>Chang, Zheng-Feng</au><au>Zhang, Ru-Bo</au><au>Chen, Hui</au><au>Wu, Hong-Bin</au><au>Cao, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Difluorobenzothiadiazole-Based Small-Molecule Organic Solar Cells with 8.7% Efficiency by Tuning of π-Conjugated Spacers and Solvent Vapor Annealing</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>26</volume><issue>11</issue><spage>1803</spage><epage>1812</epage><pages>1803-1812</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The synthesis of a series of tetrafluorine‐substituted, wide‐bandgap, small molecules consisting of various π‐conjugated spacers (furan, thiophene, selenophene) between indacenodithiophene as the electron‐donating core and the electron‐deficient difluorobenzothiadiazole unit is reported and the effect of the π‐conjugated spacers on the photovoltaic properties is investigated. The alteration of the π‐conjugated spacer enables fine‐tuning of the photophysical properties and energy levels of the small molecules, and allows the adjustment of the charge‐transport properties, the morphology of the photoactive films, as well as their photovoltaic properties. Moreover, most of these devices exhibit superior device performances after CH2Cl2 solvent annealing than without annealing, with a high fill factor (0.70–0.75 for all cases). Notably, the devices based on the new molecule BIT4FTh (with thiophene as the spacer) show an outstanding PCE of 8.7% (with an impressive FF of 0.75), considering its wide‐bandgap (1.81 eV), which is among the highest efficiencies reported so far for small‐molecules‐based solar cells. The morphologies of the photoactive layers with/without CH2Cl2 solvent annealing are characterized by atomic force microscopy, transmission electron microscopy and two‐dimensional grazing incidence X‐ray diffraction analysis. The results reported here clearly indicate that highly efficient small‐molecules‐based solar cells can be achieved through rational design of their molecular structure and optimization of the phase‐separated morphology via an adapted solvent–vapor annealing process.
A series of wide‐bandgap small‐molecules are synthesized and the effect of the various π‐conjugated spacers and of an additional solvent–vapor annealing process on their photovoltaic properties is demonstrated. The devices based on BIT4FTh (with thiophene as a spacer) shows an outstanding PCE of 8.7% (with an impressive FF of 0.75), which is among the highest efficiencies reported for devices based on wide‐bandgap small‐molecules.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201505020</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2016-03, Vol.26 (11), p.1803-1812 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800504162 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Annealing Devices Morphology organic solar cells Photovoltaic cells small molecules Solar cells Solvents Spacers structure-property relationships Thiophenes π-conjugated spacers |
title | Difluorobenzothiadiazole-Based Small-Molecule Organic Solar Cells with 8.7% Efficiency by Tuning of π-Conjugated Spacers and Solvent Vapor Annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Difluorobenzothiadiazole-Based%20Small-Molecule%20Organic%20Solar%20Cells%20with%208.7%25%20Efficiency%20by%20Tuning%20of%20%CF%80-Conjugated%20Spacers%20and%20Solvent%20Vapor%20Annealing&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Jin-Liang&rft.date=2016-03-01&rft.volume=26&rft.issue=11&rft.spage=1803&rft.epage=1812&rft.pages=1803-1812&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201505020&rft_dat=%3Cproquest_cross%3E1800504162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800504162&rft_id=info:pmid/&rfr_iscdi=true |