Facile microfluidic channels for acoustophoresis on a budget

Acoustophoresis is a powerful yet gentle technique for manipulating cells and particles that has quickly earned a place in the lab-on-a-chip toolkit. However, traditional construction techniques for acoustophoretic resonators have typically required prohibitively expensive and laborious processing m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2015-10, Vol.17 (5), p.99-8, Article 99
Hauptverfasser: Samarasekera, Champika, Yeow, John T. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 5
container_start_page 99
container_title Biomedical microdevices
container_volume 17
creator Samarasekera, Champika
Yeow, John T. W.
description Acoustophoresis is a powerful yet gentle technique for manipulating cells and particles that has quickly earned a place in the lab-on-a-chip toolkit. However, traditional construction techniques for acoustophoretic resonators have typically required prohibitively expensive and laborious processing methods. Here, we propose a highly cost-effective and cleanroom-free construction technique for transversal acoustophoretic resonators. Channels with two different widths of 750 and 300 μm were constructed using a simple glass and polyimide sandwiching technique. Half and full wavelength resonators were then established using 1 and 5 MHz ultrasound respectively and polystyrene beads were successfully manipulated in both types of resonators. This construction technique was then utilized to demonstrate a bifurcation and trifurcation microchannel with 600 μm widths and 2.5 MHz ultrasound. Our approach addresses some of the key drawbacks of acoustophoretic devices by drastically simplifying the fabrication and prototyping of transversal resonators and will assist in expanding this technology from laboratory benches and into the broader market.
doi_str_mv 10.1007/s10544-015-0006-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800504120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800504120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-77e6b6f8d01ad7bf1612b0aa7dd4fcf9aac9337acd0b5e8f4bc4d235510ba8fe3</originalsourceid><addsrcrecordid>eNqNkclKBDEQhoMo7g_gRRq8eGmtyt7gRcQNBC96Duks2tLTPSbTB9_eDKMigugpBfnqr0o-Qg4QThBAnWYEwXkNKGoAkDVdI9soFK210rheaqZVTVHJLbKT8wsANlLKTbJFJRO8QNvk7Mq6rg_VrHNpjP3U-c5V7tkOQ-hzFcdUWTdOeTHOn8cUcpercahs1U7-KSz2yEa0fQ77H-cueby6fLi4qe_ur28vzu9qx5le1EoF2cqoPaD1qo0okbZgrfKeRxcba13DmLLOQyuCjrx13FMmBEJrdQxslxyvcudpfJ1CXphZl13oezuEspxBDSCAI4W_UaVBYAOc_QNFFFwoLgp69AN9Gac0lDcvqYZLhigLhSuqfGXOKUQzT93MpjeDYJbCzEqYKcLMUpihpefwI3lqZ8F_dXwaKgBdAblcDU8hfRv9a-o7_lWfHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1719463116</pqid></control><display><type>article</type><title>Facile microfluidic channels for acoustophoresis on a budget</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Samarasekera, Champika ; Yeow, John T. W.</creator><creatorcontrib>Samarasekera, Champika ; Yeow, John T. W.</creatorcontrib><description>Acoustophoresis is a powerful yet gentle technique for manipulating cells and particles that has quickly earned a place in the lab-on-a-chip toolkit. However, traditional construction techniques for acoustophoretic resonators have typically required prohibitively expensive and laborious processing methods. Here, we propose a highly cost-effective and cleanroom-free construction technique for transversal acoustophoretic resonators. Channels with two different widths of 750 and 300 μm were constructed using a simple glass and polyimide sandwiching technique. Half and full wavelength resonators were then established using 1 and 5 MHz ultrasound respectively and polystyrene beads were successfully manipulated in both types of resonators. This construction technique was then utilized to demonstrate a bifurcation and trifurcation microchannel with 600 μm widths and 2.5 MHz ultrasound. Our approach addresses some of the key drawbacks of acoustophoretic devices by drastically simplifying the fabrication and prototyping of transversal resonators and will assist in expanding this technology from laboratory benches and into the broader market.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-015-0006-2</identifier><identifier>PMID: 26354878</identifier><identifier>CODEN: BMICFC</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acoustics - instrumentation ; Acoustophoresis ; Beads ; Biological and Medical Physics ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedical research ; Biophysics ; Cell Separation - instrumentation ; Channels ; Construction costs ; Electrophoresis - instrumentation ; Engineering ; Engineering Fluid Dynamics ; Equipment Design ; Equipment Failure Analysis ; Lab-On-A-Chip Devices ; Markets ; Medical equipment ; Micromanipulation - instrumentation ; Miniaturization ; Nanotechnology ; Rapid prototyping ; Resonators ; Sonication - instrumentation ; Ultrasound</subject><ispartof>Biomedical microdevices, 2015-10, Vol.17 (5), p.99-8, Article 99</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-77e6b6f8d01ad7bf1612b0aa7dd4fcf9aac9337acd0b5e8f4bc4d235510ba8fe3</citedby><cites>FETCH-LOGICAL-c438t-77e6b6f8d01ad7bf1612b0aa7dd4fcf9aac9337acd0b5e8f4bc4d235510ba8fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-015-0006-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-015-0006-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26354878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samarasekera, Champika</creatorcontrib><creatorcontrib>Yeow, John T. W.</creatorcontrib><title>Facile microfluidic channels for acoustophoresis on a budget</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>Acoustophoresis is a powerful yet gentle technique for manipulating cells and particles that has quickly earned a place in the lab-on-a-chip toolkit. However, traditional construction techniques for acoustophoretic resonators have typically required prohibitively expensive and laborious processing methods. Here, we propose a highly cost-effective and cleanroom-free construction technique for transversal acoustophoretic resonators. Channels with two different widths of 750 and 300 μm were constructed using a simple glass and polyimide sandwiching technique. Half and full wavelength resonators were then established using 1 and 5 MHz ultrasound respectively and polystyrene beads were successfully manipulated in both types of resonators. This construction technique was then utilized to demonstrate a bifurcation and trifurcation microchannel with 600 μm widths and 2.5 MHz ultrasound. Our approach addresses some of the key drawbacks of acoustophoretic devices by drastically simplifying the fabrication and prototyping of transversal resonators and will assist in expanding this technology from laboratory benches and into the broader market.</description><subject>Acoustics - instrumentation</subject><subject>Acoustophoresis</subject><subject>Beads</subject><subject>Biological and Medical Physics</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical research</subject><subject>Biophysics</subject><subject>Cell Separation - instrumentation</subject><subject>Channels</subject><subject>Construction costs</subject><subject>Electrophoresis - instrumentation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Lab-On-A-Chip Devices</subject><subject>Markets</subject><subject>Medical equipment</subject><subject>Micromanipulation - instrumentation</subject><subject>Miniaturization</subject><subject>Nanotechnology</subject><subject>Rapid prototyping</subject><subject>Resonators</subject><subject>Sonication - instrumentation</subject><subject>Ultrasound</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkclKBDEQhoMo7g_gRRq8eGmtyt7gRcQNBC96Duks2tLTPSbTB9_eDKMigugpBfnqr0o-Qg4QThBAnWYEwXkNKGoAkDVdI9soFK210rheaqZVTVHJLbKT8wsANlLKTbJFJRO8QNvk7Mq6rg_VrHNpjP3U-c5V7tkOQ-hzFcdUWTdOeTHOn8cUcpercahs1U7-KSz2yEa0fQ77H-cueby6fLi4qe_ur28vzu9qx5le1EoF2cqoPaD1qo0okbZgrfKeRxcba13DmLLOQyuCjrx13FMmBEJrdQxslxyvcudpfJ1CXphZl13oezuEspxBDSCAI4W_UaVBYAOc_QNFFFwoLgp69AN9Gac0lDcvqYZLhigLhSuqfGXOKUQzT93MpjeDYJbCzEqYKcLMUpihpefwI3lqZ8F_dXwaKgBdAblcDU8hfRv9a-o7_lWfHQ</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Samarasekera, Champika</creator><creator>Yeow, John T. W.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20151001</creationdate><title>Facile microfluidic channels for acoustophoresis on a budget</title><author>Samarasekera, Champika ; Yeow, John T. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-77e6b6f8d01ad7bf1612b0aa7dd4fcf9aac9337acd0b5e8f4bc4d235510ba8fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustics - instrumentation</topic><topic>Acoustophoresis</topic><topic>Beads</topic><topic>Biological and Medical Physics</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical research</topic><topic>Biophysics</topic><topic>Cell Separation - instrumentation</topic><topic>Channels</topic><topic>Construction costs</topic><topic>Electrophoresis - instrumentation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Lab-On-A-Chip Devices</topic><topic>Markets</topic><topic>Medical equipment</topic><topic>Micromanipulation - instrumentation</topic><topic>Miniaturization</topic><topic>Nanotechnology</topic><topic>Rapid prototyping</topic><topic>Resonators</topic><topic>Sonication - instrumentation</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samarasekera, Champika</creatorcontrib><creatorcontrib>Yeow, John T. W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samarasekera, Champika</au><au>Yeow, John T. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile microfluidic channels for acoustophoresis on a budget</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>17</volume><issue>5</issue><spage>99</spage><epage>8</epage><pages>99-8</pages><artnum>99</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><coden>BMICFC</coden><abstract>Acoustophoresis is a powerful yet gentle technique for manipulating cells and particles that has quickly earned a place in the lab-on-a-chip toolkit. However, traditional construction techniques for acoustophoretic resonators have typically required prohibitively expensive and laborious processing methods. Here, we propose a highly cost-effective and cleanroom-free construction technique for transversal acoustophoretic resonators. Channels with two different widths of 750 and 300 μm were constructed using a simple glass and polyimide sandwiching technique. Half and full wavelength resonators were then established using 1 and 5 MHz ultrasound respectively and polystyrene beads were successfully manipulated in both types of resonators. This construction technique was then utilized to demonstrate a bifurcation and trifurcation microchannel with 600 μm widths and 2.5 MHz ultrasound. Our approach addresses some of the key drawbacks of acoustophoretic devices by drastically simplifying the fabrication and prototyping of transversal resonators and will assist in expanding this technology from laboratory benches and into the broader market.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26354878</pmid><doi>10.1007/s10544-015-0006-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2015-10, Vol.17 (5), p.99-8, Article 99
issn 1387-2176
1572-8781
language eng
recordid cdi_proquest_miscellaneous_1800504120
source MEDLINE; SpringerNature Journals
subjects Acoustics - instrumentation
Acoustophoresis
Beads
Biological and Medical Physics
Biomedical engineering
Biomedical Engineering and Bioengineering
Biomedical research
Biophysics
Cell Separation - instrumentation
Channels
Construction costs
Electrophoresis - instrumentation
Engineering
Engineering Fluid Dynamics
Equipment Design
Equipment Failure Analysis
Lab-On-A-Chip Devices
Markets
Medical equipment
Micromanipulation - instrumentation
Miniaturization
Nanotechnology
Rapid prototyping
Resonators
Sonication - instrumentation
Ultrasound
title Facile microfluidic channels for acoustophoresis on a budget
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20microfluidic%20channels%20for%20acoustophoresis%20on%20a%20budget&rft.jtitle=Biomedical%20microdevices&rft.au=Samarasekera,%20Champika&rft.date=2015-10-01&rft.volume=17&rft.issue=5&rft.spage=99&rft.epage=8&rft.pages=99-8&rft.artnum=99&rft.issn=1387-2176&rft.eissn=1572-8781&rft.coden=BMICFC&rft_id=info:doi/10.1007/s10544-015-0006-2&rft_dat=%3Cproquest_cross%3E1800504120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1719463116&rft_id=info:pmid/26354878&rfr_iscdi=true