Feature‐based validation of the Lyon‐Fedder‐Mobarry magnetohydrodynamical model

Field‐aligned currents (FACs) play an important role in the coupling between the ionosphere and magnetosphere. Numerical simulation of these phenomena is of increasing interest, but validation has been hampered by a lack of a formal framework to compare simulations to satellite‐derived products. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2016-02, Vol.121 (2), p.1192-1200
Hauptverfasser: Kleiber, W., Hendershott, B., Sain, S. R., Wiltberger, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1200
container_issue 2
container_start_page 1192
container_title Journal of geophysical research. Space physics
container_volume 121
creator Kleiber, W.
Hendershott, B.
Sain, S. R.
Wiltberger, M.
description Field‐aligned currents (FACs) play an important role in the coupling between the ionosphere and magnetosphere. Numerical simulation of these phenomena is of increasing interest, but validation has been hampered by a lack of a formal framework to compare simulations to satellite‐derived products. We develop a statistical approach to compare FAC simulations from global magnetohydrodynamical models against satellite products. We introduce a robust algorithm that automatically detects and defines regions 1 and 2 FACs. In an example, currents derived from the Iridium satellites are compared against simulated currents from two resolutions of the Lyon‐Fedder‐Mobarry model on one solar event. We assess both average and structured discrepancies, the former being a level shift of the physical model away from the satellite product, while structural discrepancy refers to time‐varying, continuous differences. For this event, the lower resolution version of the Lyon‐Fedder‐Mobarry is shown to be a poor representation of the satellite‐derived FACs, while the higher resolution version substantially reduces discrepancy. Key Points A robust algorithm is developed to detect and extract regions 1 and 2 field‐aligned current features Increased resolution of LFM model improves FAC simulation and reduces bias against AMPERE estimates The introduction of a statistical framework allows for quantitative estimates of model discrepancy
doi_str_mv 10.1002/2015JA021825
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800503800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800503800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4773-6f659972fa16ed09556f648d038102681e516746f422aab2c2a68d93f526f0353</originalsourceid><addsrcrecordid>eNqF0UFLwzAUAOAiCo65mz-g4MWD05ekSdPjGG46JoLouWTNi-tom5m0Sm_-BH-jv8TIFMSDvkseL997IbwoOiZwTgDoBQXCFxOgRFK-Fw0oEdk4S4Duf-dMwmE08n4DIWQoET6IHmao2s7h--vbSnnU8bOqSq3a0jaxNXG7xnjZ2yZcz1BrdCG5sSvlXB_X6rHB1q577azuG1WXhari2mqsjqIDoyqPo69zGN65vJ9ejZe38-vpZDkukjRlY2EEz7KUGkUEasg4D5VEamCSABWSICciTYRJKFVqRQuqhNQZM5wKA4yzYXS6m7t19qlD3-Z16QusKtWg7XxOJAAP0wD-p6kMVISOQE9-0Y3tXBM-ElTKU5IRwoI626nCWe8dmnzrylq5PieQf24k_7mRwNmOv5QV9n_afDG_m3DKMsY-AMqajJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1775719113</pqid></control><display><type>article</type><title>Feature‐based validation of the Lyon‐Fedder‐Mobarry magnetohydrodynamical model</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><creator>Kleiber, W. ; Hendershott, B. ; Sain, S. R. ; Wiltberger, M.</creator><creatorcontrib>Kleiber, W. ; Hendershott, B. ; Sain, S. R. ; Wiltberger, M.</creatorcontrib><description>Field‐aligned currents (FACs) play an important role in the coupling between the ionosphere and magnetosphere. Numerical simulation of these phenomena is of increasing interest, but validation has been hampered by a lack of a formal framework to compare simulations to satellite‐derived products. We develop a statistical approach to compare FAC simulations from global magnetohydrodynamical models against satellite products. We introduce a robust algorithm that automatically detects and defines regions 1 and 2 FACs. In an example, currents derived from the Iridium satellites are compared against simulated currents from two resolutions of the Lyon‐Fedder‐Mobarry model on one solar event. We assess both average and structured discrepancies, the former being a level shift of the physical model away from the satellite product, while structural discrepancy refers to time‐varying, continuous differences. For this event, the lower resolution version of the Lyon‐Fedder‐Mobarry is shown to be a poor representation of the satellite‐derived FACs, while the higher resolution version substantially reduces discrepancy. Key Points A robust algorithm is developed to detect and extract regions 1 and 2 field‐aligned current features Increased resolution of LFM model improves FAC simulation and reduces bias against AMPERE estimates The introduction of a statistical framework allows for quantitative estimates of model discrepancy</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2015JA021825</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Computer simulation ; Coupling ; Estimates ; feature detection ; Feature extraction ; field‐aligned current ; Ionosphere ; Iridium ; Magnetic fields ; Mathematical models ; Representations ; resolution ; Satellites ; simulation ; validation</subject><ispartof>Journal of geophysical research. Space physics, 2016-02, Vol.121 (2), p.1192-1200</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4773-6f659972fa16ed09556f648d038102681e516746f422aab2c2a68d93f526f0353</citedby><cites>FETCH-LOGICAL-c4773-6f659972fa16ed09556f648d038102681e516746f422aab2c2a68d93f526f0353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JA021825$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JA021825$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Kleiber, W.</creatorcontrib><creatorcontrib>Hendershott, B.</creatorcontrib><creatorcontrib>Sain, S. R.</creatorcontrib><creatorcontrib>Wiltberger, M.</creatorcontrib><title>Feature‐based validation of the Lyon‐Fedder‐Mobarry magnetohydrodynamical model</title><title>Journal of geophysical research. Space physics</title><description>Field‐aligned currents (FACs) play an important role in the coupling between the ionosphere and magnetosphere. Numerical simulation of these phenomena is of increasing interest, but validation has been hampered by a lack of a formal framework to compare simulations to satellite‐derived products. We develop a statistical approach to compare FAC simulations from global magnetohydrodynamical models against satellite products. We introduce a robust algorithm that automatically detects and defines regions 1 and 2 FACs. In an example, currents derived from the Iridium satellites are compared against simulated currents from two resolutions of the Lyon‐Fedder‐Mobarry model on one solar event. We assess both average and structured discrepancies, the former being a level shift of the physical model away from the satellite product, while structural discrepancy refers to time‐varying, continuous differences. For this event, the lower resolution version of the Lyon‐Fedder‐Mobarry is shown to be a poor representation of the satellite‐derived FACs, while the higher resolution version substantially reduces discrepancy. Key Points A robust algorithm is developed to detect and extract regions 1 and 2 field‐aligned current features Increased resolution of LFM model improves FAC simulation and reduces bias against AMPERE estimates The introduction of a statistical framework allows for quantitative estimates of model discrepancy</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Estimates</subject><subject>feature detection</subject><subject>Feature extraction</subject><subject>field‐aligned current</subject><subject>Ionosphere</subject><subject>Iridium</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Representations</subject><subject>resolution</subject><subject>Satellites</subject><subject>simulation</subject><subject>validation</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0UFLwzAUAOAiCo65mz-g4MWD05ekSdPjGG46JoLouWTNi-tom5m0Sm_-BH-jv8TIFMSDvkseL997IbwoOiZwTgDoBQXCFxOgRFK-Fw0oEdk4S4Duf-dMwmE08n4DIWQoET6IHmao2s7h--vbSnnU8bOqSq3a0jaxNXG7xnjZ2yZcz1BrdCG5sSvlXB_X6rHB1q577azuG1WXhari2mqsjqIDoyqPo69zGN65vJ9ejZe38-vpZDkukjRlY2EEz7KUGkUEasg4D5VEamCSABWSICciTYRJKFVqRQuqhNQZM5wKA4yzYXS6m7t19qlD3-Z16QusKtWg7XxOJAAP0wD-p6kMVISOQE9-0Y3tXBM-ElTKU5IRwoI626nCWe8dmnzrylq5PieQf24k_7mRwNmOv5QV9n_afDG_m3DKMsY-AMqajJA</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Kleiber, W.</creator><creator>Hendershott, B.</creator><creator>Sain, S. R.</creator><creator>Wiltberger, M.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201602</creationdate><title>Feature‐based validation of the Lyon‐Fedder‐Mobarry magnetohydrodynamical model</title><author>Kleiber, W. ; Hendershott, B. ; Sain, S. R. ; Wiltberger, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4773-6f659972fa16ed09556f648d038102681e516746f422aab2c2a68d93f526f0353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Estimates</topic><topic>feature detection</topic><topic>Feature extraction</topic><topic>field‐aligned current</topic><topic>Ionosphere</topic><topic>Iridium</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Representations</topic><topic>resolution</topic><topic>Satellites</topic><topic>simulation</topic><topic>validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kleiber, W.</creatorcontrib><creatorcontrib>Hendershott, B.</creatorcontrib><creatorcontrib>Sain, S. R.</creatorcontrib><creatorcontrib>Wiltberger, M.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kleiber, W.</au><au>Hendershott, B.</au><au>Sain, S. R.</au><au>Wiltberger, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature‐based validation of the Lyon‐Fedder‐Mobarry magnetohydrodynamical model</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2016-02</date><risdate>2016</risdate><volume>121</volume><issue>2</issue><spage>1192</spage><epage>1200</epage><pages>1192-1200</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>Field‐aligned currents (FACs) play an important role in the coupling between the ionosphere and magnetosphere. Numerical simulation of these phenomena is of increasing interest, but validation has been hampered by a lack of a formal framework to compare simulations to satellite‐derived products. We develop a statistical approach to compare FAC simulations from global magnetohydrodynamical models against satellite products. We introduce a robust algorithm that automatically detects and defines regions 1 and 2 FACs. In an example, currents derived from the Iridium satellites are compared against simulated currents from two resolutions of the Lyon‐Fedder‐Mobarry model on one solar event. We assess both average and structured discrepancies, the former being a level shift of the physical model away from the satellite product, while structural discrepancy refers to time‐varying, continuous differences. For this event, the lower resolution version of the Lyon‐Fedder‐Mobarry is shown to be a poor representation of the satellite‐derived FACs, while the higher resolution version substantially reduces discrepancy. Key Points A robust algorithm is developed to detect and extract regions 1 and 2 field‐aligned current features Increased resolution of LFM model improves FAC simulation and reduces bias against AMPERE estimates The introduction of a statistical framework allows for quantitative estimates of model discrepancy</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JA021825</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2016-02, Vol.121 (2), p.1192-1200
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_miscellaneous_1800503800
source Wiley Online Library Free Content; Access via Wiley Online Library
subjects Algorithms
Computer simulation
Coupling
Estimates
feature detection
Feature extraction
field‐aligned current
Ionosphere
Iridium
Magnetic fields
Mathematical models
Representations
resolution
Satellites
simulation
validation
title Feature‐based validation of the Lyon‐Fedder‐Mobarry magnetohydrodynamical model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%E2%80%90based%20validation%20of%20the%20Lyon%E2%80%90Fedder%E2%80%90Mobarry%20magnetohydrodynamical%20model&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Kleiber,%20W.&rft.date=2016-02&rft.volume=121&rft.issue=2&rft.spage=1192&rft.epage=1200&rft.pages=1192-1200&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2015JA021825&rft_dat=%3Cproquest_cross%3E1800503800%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1775719113&rft_id=info:pmid/&rfr_iscdi=true