Chemistry‐turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere
The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene‐dominated environments has suggested missing radical sources le...
Gespeichert in:
Veröffentlicht in: | Geophysical Research Letters 2015-12, Vol.42 (24), p.10,894-10,903 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10,903 |
---|---|
container_issue | 24 |
container_start_page | 10,894 |
container_title | Geophysical Research Letters |
container_volume | 42 |
creator | Kaser, L. Karl, T. Yuan, B. Mauldin, R. L. Cantrell, C. A. Guenther, A. B. Patton, E. G. Weinheimer, A. J. Knote, C. Orlando, J. Emmons, L. Apel, E. Hornbrook, R. Shertz, S. Ullmann, K. Hall, S. Graus, M. Gouw, J. Zhou, X. Ye, C. |
description | The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene‐dominated environments has suggested missing radical sources leading to significant overestimation of the lifetime of isoprene. Here we report, for the first time, a comprehensive experimental budget of isoprene in the planetary boundary layer based on airborne flux measurements along with in situ OH observations in the Southeast and Central U.S. Our findings show that surface heterogeneity of isoprene emissions lead to a physical separation of isoprene and OH resulting in an effective slowdown in the chemistry. Depending on surface heterogeneity, the intensity of segregation (Is) could locally slow down isoprene chemistry up to 30%. The effect of segregated reactants in the planetary boundary layer on average has an influence on modeled OH radicals that is comparable to that of recently proposed radical recycling mechanisms.
Key Points
Slowdown in isoprene chemistry due to chemistry‐turbulence interactions
Smaller differences between modeled and observed OH densities than in previous studies |
doi_str_mv | 10.1002/2015GL066641 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800502167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776666053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5738-3ff89ea917214ee239d81c41bf18a04aa87c247c306550967fdb27f9771f042b3</originalsourceid><addsrcrecordid>eNqF0cFuEzEQBmCrohKh5cYDrODCgdCxvbteH1FUAlIkJFTOltcZN64cO9heqr3xCH3GPkndhkPFAU5jaT6PNP8Q8obCRwrALhjQbr2Bvu9bekIWVLbtcgAQL8gCQNY3E_1L8irnGwDgwOmCpNUO9y6XNN__vitTGiePwWDjQsGkTXEx5EaHbbPHHLPRHptfOjk9Ou_KXJn109OHssPGeNQhu3DdoLXOuNqYm2iferrsYz7sMOE5ObXaZ3z9p56RH58vr1Zflptv66-rT5ul6QQfltzaQaKWVDDaIjIutwM1LR0tHTS0Wg_CsFYYDn3XgeyF3Y5MWCkEtdCykZ-Rt8e5MRensnEFzc7EENAURQX0gtOK3h_RIcWfE-aiahoGvdcB45QVrfl1wGjF_6VC1OR76Hil7_6iN3FKoW5bVVdnScmgqg9HZVLMOaFVh-T2Os2Kgno8qHp-0MrZkd86j_M_rVp_33S8psgfAEzXoiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756739920</pqid></control><display><type>article</type><title>Chemistry‐turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere</title><source>Wiley Online Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell AGU Digital Archive</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kaser, L. ; Karl, T. ; Yuan, B. ; Mauldin, R. L. ; Cantrell, C. A. ; Guenther, A. B. ; Patton, E. G. ; Weinheimer, A. J. ; Knote, C. ; Orlando, J. ; Emmons, L. ; Apel, E. ; Hornbrook, R. ; Shertz, S. ; Ullmann, K. ; Hall, S. ; Graus, M. ; Gouw, J. ; Zhou, X. ; Ye, C.</creator><creatorcontrib>Kaser, L. ; Karl, T. ; Yuan, B. ; Mauldin, R. L. ; Cantrell, C. A. ; Guenther, A. B. ; Patton, E. G. ; Weinheimer, A. J. ; Knote, C. ; Orlando, J. ; Emmons, L. ; Apel, E. ; Hornbrook, R. ; Shertz, S. ; Ullmann, K. ; Hall, S. ; Graus, M. ; Gouw, J. ; Zhou, X. ; Ye, C. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene‐dominated environments has suggested missing radical sources leading to significant overestimation of the lifetime of isoprene. Here we report, for the first time, a comprehensive experimental budget of isoprene in the planetary boundary layer based on airborne flux measurements along with in situ OH observations in the Southeast and Central U.S. Our findings show that surface heterogeneity of isoprene emissions lead to a physical separation of isoprene and OH resulting in an effective slowdown in the chemistry. Depending on surface heterogeneity, the intensity of segregation (Is) could locally slow down isoprene chemistry up to 30%. The effect of segregated reactants in the planetary boundary layer on average has an influence on modeled OH radicals that is comparable to that of recently proposed radical recycling mechanisms.
Key Points
Slowdown in isoprene chemistry due to chemistry‐turbulence interactions
Smaller differences between modeled and observed OH densities than in previous studies</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL066641</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Atmosphere ; Atmospheres ; Boundary layers ; Chemistry ; Density ; Efficiency ; fluxes ; Heterogeneity ; hydroxyl radical ; Hydroxyl radicals ; Isoprene ; Organic compounds ; Oxidizing agents ; Planetary boundary layer ; Radicals ; Segregations ; Turbulence ; Vegetation ; VOCs ; Volatile organic compounds</subject><ispartof>Geophysical Research Letters, 2015-12, Vol.42 (24), p.10,894-10,903</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5738-3ff89ea917214ee239d81c41bf18a04aa87c247c306550967fdb27f9771f042b3</citedby><cites>FETCH-LOGICAL-c5738-3ff89ea917214ee239d81c41bf18a04aa87c247c306550967fdb27f9771f042b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL066641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL066641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1706731$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaser, L.</creatorcontrib><creatorcontrib>Karl, T.</creatorcontrib><creatorcontrib>Yuan, B.</creatorcontrib><creatorcontrib>Mauldin, R. L.</creatorcontrib><creatorcontrib>Cantrell, C. A.</creatorcontrib><creatorcontrib>Guenther, A. B.</creatorcontrib><creatorcontrib>Patton, E. G.</creatorcontrib><creatorcontrib>Weinheimer, A. J.</creatorcontrib><creatorcontrib>Knote, C.</creatorcontrib><creatorcontrib>Orlando, J.</creatorcontrib><creatorcontrib>Emmons, L.</creatorcontrib><creatorcontrib>Apel, E.</creatorcontrib><creatorcontrib>Hornbrook, R.</creatorcontrib><creatorcontrib>Shertz, S.</creatorcontrib><creatorcontrib>Ullmann, K.</creatorcontrib><creatorcontrib>Hall, S.</creatorcontrib><creatorcontrib>Graus, M.</creatorcontrib><creatorcontrib>Gouw, J.</creatorcontrib><creatorcontrib>Zhou, X.</creatorcontrib><creatorcontrib>Ye, C.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Chemistry‐turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere</title><title>Geophysical Research Letters</title><description>The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene‐dominated environments has suggested missing radical sources leading to significant overestimation of the lifetime of isoprene. Here we report, for the first time, a comprehensive experimental budget of isoprene in the planetary boundary layer based on airborne flux measurements along with in situ OH observations in the Southeast and Central U.S. Our findings show that surface heterogeneity of isoprene emissions lead to a physical separation of isoprene and OH resulting in an effective slowdown in the chemistry. Depending on surface heterogeneity, the intensity of segregation (Is) could locally slow down isoprene chemistry up to 30%. The effect of segregated reactants in the planetary boundary layer on average has an influence on modeled OH radicals that is comparable to that of recently proposed radical recycling mechanisms.
Key Points
Slowdown in isoprene chemistry due to chemistry‐turbulence interactions
Smaller differences between modeled and observed OH densities than in previous studies</description><subject>Atmosphere</subject><subject>Atmospheres</subject><subject>Boundary layers</subject><subject>Chemistry</subject><subject>Density</subject><subject>Efficiency</subject><subject>fluxes</subject><subject>Heterogeneity</subject><subject>hydroxyl radical</subject><subject>Hydroxyl radicals</subject><subject>Isoprene</subject><subject>Organic compounds</subject><subject>Oxidizing agents</subject><subject>Planetary boundary layer</subject><subject>Radicals</subject><subject>Segregations</subject><subject>Turbulence</subject><subject>Vegetation</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0cFuEzEQBmCrohKh5cYDrODCgdCxvbteH1FUAlIkJFTOltcZN64cO9heqr3xCH3GPkndhkPFAU5jaT6PNP8Q8obCRwrALhjQbr2Bvu9bekIWVLbtcgAQL8gCQNY3E_1L8irnGwDgwOmCpNUO9y6XNN__vitTGiePwWDjQsGkTXEx5EaHbbPHHLPRHptfOjk9Ou_KXJn109OHssPGeNQhu3DdoLXOuNqYm2iferrsYz7sMOE5ObXaZ3z9p56RH58vr1Zflptv66-rT5ul6QQfltzaQaKWVDDaIjIutwM1LR0tHTS0Wg_CsFYYDn3XgeyF3Y5MWCkEtdCykZ-Rt8e5MRensnEFzc7EENAURQX0gtOK3h_RIcWfE-aiahoGvdcB45QVrfl1wGjF_6VC1OR76Hil7_6iN3FKoW5bVVdnScmgqg9HZVLMOaFVh-T2Os2Kgno8qHp-0MrZkd86j_M_rVp_33S8psgfAEzXoiA</recordid><startdate>20151228</startdate><enddate>20151228</enddate><creator>Kaser, L.</creator><creator>Karl, T.</creator><creator>Yuan, B.</creator><creator>Mauldin, R. L.</creator><creator>Cantrell, C. A.</creator><creator>Guenther, A. B.</creator><creator>Patton, E. G.</creator><creator>Weinheimer, A. J.</creator><creator>Knote, C.</creator><creator>Orlando, J.</creator><creator>Emmons, L.</creator><creator>Apel, E.</creator><creator>Hornbrook, R.</creator><creator>Shertz, S.</creator><creator>Ullmann, K.</creator><creator>Hall, S.</creator><creator>Graus, M.</creator><creator>Gouw, J.</creator><creator>Zhou, X.</creator><creator>Ye, C.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><scope>OTOTI</scope></search><sort><creationdate>20151228</creationdate><title>Chemistry‐turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere</title><author>Kaser, L. ; Karl, T. ; Yuan, B. ; Mauldin, R. L. ; Cantrell, C. A. ; Guenther, A. B. ; Patton, E. G. ; Weinheimer, A. J. ; Knote, C. ; Orlando, J. ; Emmons, L. ; Apel, E. ; Hornbrook, R. ; Shertz, S. ; Ullmann, K. ; Hall, S. ; Graus, M. ; Gouw, J. ; Zhou, X. ; Ye, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5738-3ff89ea917214ee239d81c41bf18a04aa87c247c306550967fdb27f9771f042b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmosphere</topic><topic>Atmospheres</topic><topic>Boundary layers</topic><topic>Chemistry</topic><topic>Density</topic><topic>Efficiency</topic><topic>fluxes</topic><topic>Heterogeneity</topic><topic>hydroxyl radical</topic><topic>Hydroxyl radicals</topic><topic>Isoprene</topic><topic>Organic compounds</topic><topic>Oxidizing agents</topic><topic>Planetary boundary layer</topic><topic>Radicals</topic><topic>Segregations</topic><topic>Turbulence</topic><topic>Vegetation</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaser, L.</creatorcontrib><creatorcontrib>Karl, T.</creatorcontrib><creatorcontrib>Yuan, B.</creatorcontrib><creatorcontrib>Mauldin, R. L.</creatorcontrib><creatorcontrib>Cantrell, C. A.</creatorcontrib><creatorcontrib>Guenther, A. B.</creatorcontrib><creatorcontrib>Patton, E. G.</creatorcontrib><creatorcontrib>Weinheimer, A. J.</creatorcontrib><creatorcontrib>Knote, C.</creatorcontrib><creatorcontrib>Orlando, J.</creatorcontrib><creatorcontrib>Emmons, L.</creatorcontrib><creatorcontrib>Apel, E.</creatorcontrib><creatorcontrib>Hornbrook, R.</creatorcontrib><creatorcontrib>Shertz, S.</creatorcontrib><creatorcontrib>Ullmann, K.</creatorcontrib><creatorcontrib>Hall, S.</creatorcontrib><creatorcontrib>Graus, M.</creatorcontrib><creatorcontrib>Gouw, J.</creatorcontrib><creatorcontrib>Zhou, X.</creatorcontrib><creatorcontrib>Ye, C.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><jtitle>Geophysical Research Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaser, L.</au><au>Karl, T.</au><au>Yuan, B.</au><au>Mauldin, R. L.</au><au>Cantrell, C. A.</au><au>Guenther, A. B.</au><au>Patton, E. G.</au><au>Weinheimer, A. J.</au><au>Knote, C.</au><au>Orlando, J.</au><au>Emmons, L.</au><au>Apel, E.</au><au>Hornbrook, R.</au><au>Shertz, S.</au><au>Ullmann, K.</au><au>Hall, S.</au><au>Graus, M.</au><au>Gouw, J.</au><au>Zhou, X.</au><au>Ye, C.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemistry‐turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere</atitle><jtitle>Geophysical Research Letters</jtitle><date>2015-12-28</date><risdate>2015</risdate><volume>42</volume><issue>24</issue><spage>10,894</spage><epage>10,903</epage><pages>10,894-10,903</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The hydroxyl radical (OH) is the most important oxidant in the atmosphere and the primary sink for isoprene, the dominant volatile organic compound emitted by vegetation. Recent research on the atmospheric oxidation capacity in isoprene‐dominated environments has suggested missing radical sources leading to significant overestimation of the lifetime of isoprene. Here we report, for the first time, a comprehensive experimental budget of isoprene in the planetary boundary layer based on airborne flux measurements along with in situ OH observations in the Southeast and Central U.S. Our findings show that surface heterogeneity of isoprene emissions lead to a physical separation of isoprene and OH resulting in an effective slowdown in the chemistry. Depending on surface heterogeneity, the intensity of segregation (Is) could locally slow down isoprene chemistry up to 30%. The effect of segregated reactants in the planetary boundary layer on average has an influence on modeled OH radicals that is comparable to that of recently proposed radical recycling mechanisms.
Key Points
Slowdown in isoprene chemistry due to chemistry‐turbulence interactions
Smaller differences between modeled and observed OH densities than in previous studies</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2015GL066641</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical Research Letters, 2015-12, Vol.42 (24), p.10,894-10,903 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800502167 |
source | Wiley Online Library; Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell AGU Digital Archive; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Atmosphere Atmospheres Boundary layers Chemistry Density Efficiency fluxes Heterogeneity hydroxyl radical Hydroxyl radicals Isoprene Organic compounds Oxidizing agents Planetary boundary layer Radicals Segregations Turbulence Vegetation VOCs Volatile organic compounds |
title | Chemistry‐turbulence interactions and mesoscale variability influence the cleansing efficiency of the atmosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemistry%E2%80%90turbulence%20interactions%20and%20mesoscale%20variability%20influence%20the%20cleansing%20efficiency%20of%20the%20atmosphere&rft.jtitle=Geophysical%20Research%20Letters&rft.au=Kaser,%20L.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2015-12-28&rft.volume=42&rft.issue=24&rft.spage=10,894&rft.epage=10,903&rft.pages=10,894-10,903&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL066641&rft_dat=%3Cproquest_osti_%3E1776666053%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756739920&rft_id=info:pmid/&rfr_iscdi=true |