Modeling of visco-hyperelastic behavior of transversely isotropic functionally graded rubbers

In this article, visco‐hyperelastic constitutive model is developed to describe the rate‐dependent behavior of transversely isotropic functionally graded rubber‐like materials at finite deformations. Zener model that consists of Maxwell element parallel to a hyperelastic equilibrium spring is used i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2016-03, Vol.56 (3), p.342-347
Hauptverfasser: Anani, Yavar, Rahimi, Gholamhosein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 3
container_start_page 342
container_title Polymer engineering and science
container_volume 56
creator Anani, Yavar
Rahimi, Gholamhosein
description In this article, visco‐hyperelastic constitutive model is developed to describe the rate‐dependent behavior of transversely isotropic functionally graded rubber‐like materials at finite deformations. Zener model that consists of Maxwell element parallel to a hyperelastic equilibrium spring is used in this article. Steady state response is described by equilibrium hyperelastic spring and rate‐dependence behavior is modeled by Maxwell element that consists of a hyperelastic intermediate spring and a nonlinear viscous damper. Modified and reinforced neo‐Hookean strain energy function is proposed for the two hyperelastic springs. The mechanical properties and material constants of strain energy function are graded along the axial direction based on exponential function. A history‐integral method has been used to develop a constitutive equation for modeling the behavior of the model. The applied history integral method is based on the Kaye‐BKZ theory. The material constant parameters appeared in the formulation have been determined with the aid of available uniaxial tensile experimental tests for a specific material and the results are compared to experimental results. It is then concluded that, the proposed constitutive equation is quite proficient in forecasting the behavior of rubber‐like materials in different deformation and wide ranges of strain rate. POLYM. ENG. SCI., 56:342–347, 2016. © 2016 Society of Plastics Engineers
doi_str_mv 10.1002/pen.24259
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800501093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A445117398</galeid><sourcerecordid>A445117398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6849-93d572a79e77ccb80cc85c1e31a48e26db40c633dd838519a06c0441f8de35513</originalsourceid><addsrcrecordid>eNp10mFr1DAYB_AiDjynL_wGBd8o2FvSJE36co55G8zbcIogSEjTp73MXtIl7el9--V2c3pyEmgg_f0fnoQnSV5hNMUI5Uc92GlOc1Y-SSaYUZHlBaFPkwlCJM-IEOJZ8jyEGxQtYeUk-f7R1dAZ26auSVcmaJct1j146FQYjE4rWKiVcX7ze_DKhhX4AN06NcEN3vWRNKPVg3FWdfG49aqGOvVjVUX4IjloVBfg5cN-mHz5cPr55Cy7uJydnxxfZLoQtMxKUjOeK14C51pXAmktmMZAsKIC8qKuKNIFIXUtiGC4VKjQiFLciBoIY5gcJm-2dXvvbkcIg1zGq0DXKQtuDBILhBjCqCSRvv6H3rjRx-aj4gVHBcNc_FGt6kAa28TLKr0pKo8pZRhzUm5Utke1YMGrzlloTDze8dM9Pq4alkbvDbzdCUQzwK-hVWMI8vz6065995etxmAshPgJpl0MYRvZV1p7F4KHRvbeLJVfS4zkZpRkHCV5P0rRHm3tz9jf-v9QXp3OfyceXsaE2PBjQvkfsuCEM_l1PpPzfPb-7PoblXNyB_Qu1xk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767065178</pqid></control><display><type>article</type><title>Modeling of visco-hyperelastic behavior of transversely isotropic functionally graded rubbers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Anani, Yavar ; Rahimi, Gholamhosein</creator><creatorcontrib>Anani, Yavar ; Rahimi, Gholamhosein</creatorcontrib><description>In this article, visco‐hyperelastic constitutive model is developed to describe the rate‐dependent behavior of transversely isotropic functionally graded rubber‐like materials at finite deformations. Zener model that consists of Maxwell element parallel to a hyperelastic equilibrium spring is used in this article. Steady state response is described by equilibrium hyperelastic spring and rate‐dependence behavior is modeled by Maxwell element that consists of a hyperelastic intermediate spring and a nonlinear viscous damper. Modified and reinforced neo‐Hookean strain energy function is proposed for the two hyperelastic springs. The mechanical properties and material constants of strain energy function are graded along the axial direction based on exponential function. A history‐integral method has been used to develop a constitutive equation for modeling the behavior of the model. The applied history integral method is based on the Kaye‐BKZ theory. The material constant parameters appeared in the formulation have been determined with the aid of available uniaxial tensile experimental tests for a specific material and the results are compared to experimental results. It is then concluded that, the proposed constitutive equation is quite proficient in forecasting the behavior of rubber‐like materials in different deformation and wide ranges of strain rate. POLYM. ENG. SCI., 56:342–347, 2016. © 2016 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.24259</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Newtown: Blackwell Publishing Ltd</publisher><subject>Constants ; Constitutive equations ; Constitutive relationships ; Deformation ; Engineering models ; Functionally gradient materials ; Materials science ; Mathematical models ; Mechanical properties ; Modelling ; Polymers ; Rubber ; Strain ; Strain rate ; Tensile strength ; Viscoelasticity</subject><ispartof>Polymer engineering and science, 2016-03, Vol.56 (3), p.342-347</ispartof><rights>2016 Society of Plastics Engineers</rights><rights>COPYRIGHT 2016 Society of Plastics Engineers, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6849-93d572a79e77ccb80cc85c1e31a48e26db40c633dd838519a06c0441f8de35513</citedby><cites>FETCH-LOGICAL-c6849-93d572a79e77ccb80cc85c1e31a48e26db40c633dd838519a06c0441f8de35513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.24259$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.24259$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Anani, Yavar</creatorcontrib><creatorcontrib>Rahimi, Gholamhosein</creatorcontrib><title>Modeling of visco-hyperelastic behavior of transversely isotropic functionally graded rubbers</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>In this article, visco‐hyperelastic constitutive model is developed to describe the rate‐dependent behavior of transversely isotropic functionally graded rubber‐like materials at finite deformations. Zener model that consists of Maxwell element parallel to a hyperelastic equilibrium spring is used in this article. Steady state response is described by equilibrium hyperelastic spring and rate‐dependence behavior is modeled by Maxwell element that consists of a hyperelastic intermediate spring and a nonlinear viscous damper. Modified and reinforced neo‐Hookean strain energy function is proposed for the two hyperelastic springs. The mechanical properties and material constants of strain energy function are graded along the axial direction based on exponential function. A history‐integral method has been used to develop a constitutive equation for modeling the behavior of the model. The applied history integral method is based on the Kaye‐BKZ theory. The material constant parameters appeared in the formulation have been determined with the aid of available uniaxial tensile experimental tests for a specific material and the results are compared to experimental results. It is then concluded that, the proposed constitutive equation is quite proficient in forecasting the behavior of rubber‐like materials in different deformation and wide ranges of strain rate. POLYM. ENG. SCI., 56:342–347, 2016. © 2016 Society of Plastics Engineers</description><subject>Constants</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Deformation</subject><subject>Engineering models</subject><subject>Functionally gradient materials</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Modelling</subject><subject>Polymers</subject><subject>Rubber</subject><subject>Strain</subject><subject>Strain rate</subject><subject>Tensile strength</subject><subject>Viscoelasticity</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp10mFr1DAYB_AiDjynL_wGBd8o2FvSJE36co55G8zbcIogSEjTp73MXtIl7el9--V2c3pyEmgg_f0fnoQnSV5hNMUI5Uc92GlOc1Y-SSaYUZHlBaFPkwlCJM-IEOJZ8jyEGxQtYeUk-f7R1dAZ26auSVcmaJct1j146FQYjE4rWKiVcX7ze_DKhhX4AN06NcEN3vWRNKPVg3FWdfG49aqGOvVjVUX4IjloVBfg5cN-mHz5cPr55Cy7uJydnxxfZLoQtMxKUjOeK14C51pXAmktmMZAsKIC8qKuKNIFIXUtiGC4VKjQiFLciBoIY5gcJm-2dXvvbkcIg1zGq0DXKQtuDBILhBjCqCSRvv6H3rjRx-aj4gVHBcNc_FGt6kAa28TLKr0pKo8pZRhzUm5Utke1YMGrzlloTDze8dM9Pq4alkbvDbzdCUQzwK-hVWMI8vz6065995etxmAshPgJpl0MYRvZV1p7F4KHRvbeLJVfS4zkZpRkHCV5P0rRHm3tz9jf-v9QXp3OfyceXsaE2PBjQvkfsuCEM_l1PpPzfPb-7PoblXNyB_Qu1xk</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Anani, Yavar</creator><creator>Rahimi, Gholamhosein</creator><general>Blackwell Publishing Ltd</general><general>Society of Plastics Engineers, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201603</creationdate><title>Modeling of visco-hyperelastic behavior of transversely isotropic functionally graded rubbers</title><author>Anani, Yavar ; Rahimi, Gholamhosein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6849-93d572a79e77ccb80cc85c1e31a48e26db40c633dd838519a06c0441f8de35513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Constants</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Deformation</topic><topic>Engineering models</topic><topic>Functionally gradient materials</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Modelling</topic><topic>Polymers</topic><topic>Rubber</topic><topic>Strain</topic><topic>Strain rate</topic><topic>Tensile strength</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anani, Yavar</creatorcontrib><creatorcontrib>Rahimi, Gholamhosein</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anani, Yavar</au><au>Rahimi, Gholamhosein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of visco-hyperelastic behavior of transversely isotropic functionally graded rubbers</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2016-03</date><risdate>2016</risdate><volume>56</volume><issue>3</issue><spage>342</spage><epage>347</epage><pages>342-347</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>In this article, visco‐hyperelastic constitutive model is developed to describe the rate‐dependent behavior of transversely isotropic functionally graded rubber‐like materials at finite deformations. Zener model that consists of Maxwell element parallel to a hyperelastic equilibrium spring is used in this article. Steady state response is described by equilibrium hyperelastic spring and rate‐dependence behavior is modeled by Maxwell element that consists of a hyperelastic intermediate spring and a nonlinear viscous damper. Modified and reinforced neo‐Hookean strain energy function is proposed for the two hyperelastic springs. The mechanical properties and material constants of strain energy function are graded along the axial direction based on exponential function. A history‐integral method has been used to develop a constitutive equation for modeling the behavior of the model. The applied history integral method is based on the Kaye‐BKZ theory. The material constant parameters appeared in the formulation have been determined with the aid of available uniaxial tensile experimental tests for a specific material and the results are compared to experimental results. It is then concluded that, the proposed constitutive equation is quite proficient in forecasting the behavior of rubber‐like materials in different deformation and wide ranges of strain rate. POLYM. ENG. SCI., 56:342–347, 2016. © 2016 Society of Plastics Engineers</abstract><cop>Newtown</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pen.24259</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2016-03, Vol.56 (3), p.342-347
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_miscellaneous_1800501093
source Wiley Online Library Journals Frontfile Complete
subjects Constants
Constitutive equations
Constitutive relationships
Deformation
Engineering models
Functionally gradient materials
Materials science
Mathematical models
Mechanical properties
Modelling
Polymers
Rubber
Strain
Strain rate
Tensile strength
Viscoelasticity
title Modeling of visco-hyperelastic behavior of transversely isotropic functionally graded rubbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20visco-hyperelastic%20behavior%20of%20transversely%20isotropic%20functionally%20graded%20rubbers&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Anani,%20Yavar&rft.date=2016-03&rft.volume=56&rft.issue=3&rft.spage=342&rft.epage=347&rft.pages=342-347&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.24259&rft_dat=%3Cgale_proqu%3EA445117398%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767065178&rft_id=info:pmid/&rft_galeid=A445117398&rfr_iscdi=true