Extracting the regional common‐mode component of GPS station position time series from dense continuous network
We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common‐mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilize...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2016-02, Vol.121 (2), p.1080-1096 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1096 |
---|---|
container_issue | 2 |
container_start_page | 1080 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 121 |
creator | Tian, Yunfeng Shen, Zheng‐Kang |
description | We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common‐mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long‐term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root‐mean‐square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long‐range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation‐based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics.
Key Points
A correlation‐weighted spatial filtering is developed for CGPS data analysis
The filter achieves significant common‐mode signal reduction
The filter can extract any signals common to a subset of a CGPS network |
doi_str_mv | 10.1002/2015JB012253 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800500020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904960319</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4294-cb766715a73fd379bcd72a31221a09dd5ebb2204b9d62e38cb51d1be7e743f4c3</originalsourceid><addsrcrecordid>eNp90b1OwzAQAOAIgURV2HgASywMFPyXuB5pVQpVJRA_c-Qkl5KS2KntqnTjEXhGngSXIoQY6sVn6_PpfBdFJwRfEIzpJcUkngwwoTRme1GHkkT2JIuT_d-YsMPo2Lk5DqsfrgjvRIvRm7cq95WeIf8CyMKsMlrVKDdNY_Tn-0djCticWqNBe2RKNL5_RM4rHyBqjau-A181gBzYChwqrWlQAdptHuqQe2mWDmnwK2Nfj6KDUtUOjn_2bvR8PXoa3vSmd-Pb4dW0pziVvJdnIkkEiZVgZcGEzPJCUMXC94jCsihiyDJKMc9kkVBg_TyLSUEyECA4K3nOutHZNm9rzWIJzqdN5XKoa6UhlJOSPsZx6ATFgZ7-o3OztKELQUnMZYIZkTuVEFwQjiUP6nyrcmucs1Cmra0aZdcpwelmUOnfQQXOtnxV1bDeadPJ-GEQE845-wJ-lZTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774714094</pqid></control><display><type>article</type><title>Extracting the regional common‐mode component of GPS station position time series from dense continuous network</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tian, Yunfeng ; Shen, Zheng‐Kang</creator><creatorcontrib>Tian, Yunfeng ; Shen, Zheng‐Kang</creatorcontrib><description>We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common‐mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long‐term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root‐mean‐square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long‐range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation‐based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics.
Key Points
A correlation‐weighted spatial filtering is developed for CGPS data analysis
The filter achieves significant common‐mode signal reduction
The filter can extract any signals common to a subset of a CGPS network</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2015JB012253</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Atmospheric disturbances ; Clustering ; Clusters ; common‐mode component ; Correlation ; Correlation analysis ; Data analysis ; Data processing ; Deformation ; Distance ; Geophysics ; Global positioning systems ; GPS ; Mathematical models ; Methods ; Networks ; Noise ; Noise prediction ; Optimization ; Origins ; position time series ; Positioning systems ; Principal components analysis ; Random noise ; Reduction ; Regional ; Regional development ; Satellite navigation systems ; Searching ; Spatial analysis ; spatial correlation ; Spatial filtering ; Stations ; Tectonics ; Thresholds ; Time series ; transient ; Weighting</subject><ispartof>Journal of geophysical research. Solid earth, 2016-02, Vol.121 (2), p.1080-1096</ispartof><rights>2016. The Authors.</rights><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4294-cb766715a73fd379bcd72a31221a09dd5ebb2204b9d62e38cb51d1be7e743f4c3</citedby><cites>FETCH-LOGICAL-a4294-cb766715a73fd379bcd72a31221a09dd5ebb2204b9d62e38cb51d1be7e743f4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JB012253$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JB012253$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Tian, Yunfeng</creatorcontrib><creatorcontrib>Shen, Zheng‐Kang</creatorcontrib><title>Extracting the regional common‐mode component of GPS station position time series from dense continuous network</title><title>Journal of geophysical research. Solid earth</title><description>We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common‐mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long‐term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root‐mean‐square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long‐range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation‐based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics.
Key Points
A correlation‐weighted spatial filtering is developed for CGPS data analysis
The filter achieves significant common‐mode signal reduction
The filter can extract any signals common to a subset of a CGPS network</description><subject>Algorithms</subject><subject>Atmospheric disturbances</subject><subject>Clustering</subject><subject>Clusters</subject><subject>common‐mode component</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Deformation</subject><subject>Distance</subject><subject>Geophysics</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Networks</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Optimization</subject><subject>Origins</subject><subject>position time series</subject><subject>Positioning systems</subject><subject>Principal components analysis</subject><subject>Random noise</subject><subject>Reduction</subject><subject>Regional</subject><subject>Regional development</subject><subject>Satellite navigation systems</subject><subject>Searching</subject><subject>Spatial analysis</subject><subject>spatial correlation</subject><subject>Spatial filtering</subject><subject>Stations</subject><subject>Tectonics</subject><subject>Thresholds</subject><subject>Time series</subject><subject>transient</subject><subject>Weighting</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90b1OwzAQAOAIgURV2HgASywMFPyXuB5pVQpVJRA_c-Qkl5KS2KntqnTjEXhGngSXIoQY6sVn6_PpfBdFJwRfEIzpJcUkngwwoTRme1GHkkT2JIuT_d-YsMPo2Lk5DqsfrgjvRIvRm7cq95WeIf8CyMKsMlrVKDdNY_Tn-0djCticWqNBe2RKNL5_RM4rHyBqjau-A181gBzYChwqrWlQAdptHuqQe2mWDmnwK2Nfj6KDUtUOjn_2bvR8PXoa3vSmd-Pb4dW0pziVvJdnIkkEiZVgZcGEzPJCUMXC94jCsihiyDJKMc9kkVBg_TyLSUEyECA4K3nOutHZNm9rzWIJzqdN5XKoa6UhlJOSPsZx6ATFgZ7-o3OztKELQUnMZYIZkTuVEFwQjiUP6nyrcmucs1Cmra0aZdcpwelmUOnfQQXOtnxV1bDeadPJ-GEQE845-wJ-lZTU</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Tian, Yunfeng</creator><creator>Shen, Zheng‐Kang</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201602</creationdate><title>Extracting the regional common‐mode component of GPS station position time series from dense continuous network</title><author>Tian, Yunfeng ; Shen, Zheng‐Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4294-cb766715a73fd379bcd72a31221a09dd5ebb2204b9d62e38cb51d1be7e743f4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Atmospheric disturbances</topic><topic>Clustering</topic><topic>Clusters</topic><topic>common‐mode component</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Deformation</topic><topic>Distance</topic><topic>Geophysics</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Networks</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Optimization</topic><topic>Origins</topic><topic>position time series</topic><topic>Positioning systems</topic><topic>Principal components analysis</topic><topic>Random noise</topic><topic>Reduction</topic><topic>Regional</topic><topic>Regional development</topic><topic>Satellite navigation systems</topic><topic>Searching</topic><topic>Spatial analysis</topic><topic>spatial correlation</topic><topic>Spatial filtering</topic><topic>Stations</topic><topic>Tectonics</topic><topic>Thresholds</topic><topic>Time series</topic><topic>transient</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yunfeng</creatorcontrib><creatorcontrib>Shen, Zheng‐Kang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yunfeng</au><au>Shen, Zheng‐Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting the regional common‐mode component of GPS station position time series from dense continuous network</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2016-02</date><risdate>2016</risdate><volume>121</volume><issue>2</issue><spage>1080</spage><epage>1096</epage><pages>1080-1096</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common‐mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long‐term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root‐mean‐square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long‐range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation‐based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics.
Key Points
A correlation‐weighted spatial filtering is developed for CGPS data analysis
The filter achieves significant common‐mode signal reduction
The filter can extract any signals common to a subset of a CGPS network</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JB012253</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2016-02, Vol.121 (2), p.1080-1096 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800500020 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Atmospheric disturbances Clustering Clusters common‐mode component Correlation Correlation analysis Data analysis Data processing Deformation Distance Geophysics Global positioning systems GPS Mathematical models Methods Networks Noise Noise prediction Optimization Origins position time series Positioning systems Principal components analysis Random noise Reduction Regional Regional development Satellite navigation systems Searching Spatial analysis spatial correlation Spatial filtering Stations Tectonics Thresholds Time series transient Weighting |
title | Extracting the regional common‐mode component of GPS station position time series from dense continuous network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20the%20regional%20common%E2%80%90mode%20component%20of%20GPS%20station%20position%20time%20series%20from%20dense%20continuous%20network&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Tian,%20Yunfeng&rft.date=2016-02&rft.volume=121&rft.issue=2&rft.spage=1080&rft.epage=1096&rft.pages=1080-1096&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2015JB012253&rft_dat=%3Cproquest_cross%3E1904960319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774714094&rft_id=info:pmid/&rfr_iscdi=true |