Extracting the regional common‐mode component of GPS station position time series from dense continuous network

We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common‐mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Solid earth 2016-02, Vol.121 (2), p.1080-1096
Hauptverfasser: Tian, Yunfeng, Shen, Zheng‐Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1096
container_issue 2
container_start_page 1080
container_title Journal of geophysical research. Solid earth
container_volume 121
creator Tian, Yunfeng
Shen, Zheng‐Kang
description We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common‐mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long‐term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root‐mean‐square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long‐range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation‐based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics. Key Points A correlation‐weighted spatial filtering is developed for CGPS data analysis The filter achieves significant common‐mode signal reduction The filter can extract any signals common to a subset of a CGPS network
doi_str_mv 10.1002/2015JB012253
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800500020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904960319</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4294-cb766715a73fd379bcd72a31221a09dd5ebb2204b9d62e38cb51d1be7e743f4c3</originalsourceid><addsrcrecordid>eNp90b1OwzAQAOAIgURV2HgASywMFPyXuB5pVQpVJRA_c-Qkl5KS2KntqnTjEXhGngSXIoQY6sVn6_PpfBdFJwRfEIzpJcUkngwwoTRme1GHkkT2JIuT_d-YsMPo2Lk5DqsfrgjvRIvRm7cq95WeIf8CyMKsMlrVKDdNY_Tn-0djCticWqNBe2RKNL5_RM4rHyBqjau-A181gBzYChwqrWlQAdptHuqQe2mWDmnwK2Nfj6KDUtUOjn_2bvR8PXoa3vSmd-Pb4dW0pziVvJdnIkkEiZVgZcGEzPJCUMXC94jCsihiyDJKMc9kkVBg_TyLSUEyECA4K3nOutHZNm9rzWIJzqdN5XKoa6UhlJOSPsZx6ATFgZ7-o3OztKELQUnMZYIZkTuVEFwQjiUP6nyrcmucs1Cmra0aZdcpwelmUOnfQQXOtnxV1bDeadPJ-GEQE845-wJ-lZTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774714094</pqid></control><display><type>article</type><title>Extracting the regional common‐mode component of GPS station position time series from dense continuous network</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tian, Yunfeng ; Shen, Zheng‐Kang</creator><creatorcontrib>Tian, Yunfeng ; Shen, Zheng‐Kang</creatorcontrib><description>We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common‐mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long‐term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root‐mean‐square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (&gt;13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long‐range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation‐based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics. Key Points A correlation‐weighted spatial filtering is developed for CGPS data analysis The filter achieves significant common‐mode signal reduction The filter can extract any signals common to a subset of a CGPS network</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2015JB012253</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Atmospheric disturbances ; Clustering ; Clusters ; common‐mode component ; Correlation ; Correlation analysis ; Data analysis ; Data processing ; Deformation ; Distance ; Geophysics ; Global positioning systems ; GPS ; Mathematical models ; Methods ; Networks ; Noise ; Noise prediction ; Optimization ; Origins ; position time series ; Positioning systems ; Principal components analysis ; Random noise ; Reduction ; Regional ; Regional development ; Satellite navigation systems ; Searching ; Spatial analysis ; spatial correlation ; Spatial filtering ; Stations ; Tectonics ; Thresholds ; Time series ; transient ; Weighting</subject><ispartof>Journal of geophysical research. Solid earth, 2016-02, Vol.121 (2), p.1080-1096</ispartof><rights>2016. The Authors.</rights><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4294-cb766715a73fd379bcd72a31221a09dd5ebb2204b9d62e38cb51d1be7e743f4c3</citedby><cites>FETCH-LOGICAL-a4294-cb766715a73fd379bcd72a31221a09dd5ebb2204b9d62e38cb51d1be7e743f4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JB012253$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JB012253$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Tian, Yunfeng</creatorcontrib><creatorcontrib>Shen, Zheng‐Kang</creatorcontrib><title>Extracting the regional common‐mode component of GPS station position time series from dense continuous network</title><title>Journal of geophysical research. Solid earth</title><description>We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common‐mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long‐term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root‐mean‐square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (&gt;13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long‐range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation‐based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics. Key Points A correlation‐weighted spatial filtering is developed for CGPS data analysis The filter achieves significant common‐mode signal reduction The filter can extract any signals common to a subset of a CGPS network</description><subject>Algorithms</subject><subject>Atmospheric disturbances</subject><subject>Clustering</subject><subject>Clusters</subject><subject>common‐mode component</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Deformation</subject><subject>Distance</subject><subject>Geophysics</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Networks</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Optimization</subject><subject>Origins</subject><subject>position time series</subject><subject>Positioning systems</subject><subject>Principal components analysis</subject><subject>Random noise</subject><subject>Reduction</subject><subject>Regional</subject><subject>Regional development</subject><subject>Satellite navigation systems</subject><subject>Searching</subject><subject>Spatial analysis</subject><subject>spatial correlation</subject><subject>Spatial filtering</subject><subject>Stations</subject><subject>Tectonics</subject><subject>Thresholds</subject><subject>Time series</subject><subject>transient</subject><subject>Weighting</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90b1OwzAQAOAIgURV2HgASywMFPyXuB5pVQpVJRA_c-Qkl5KS2KntqnTjEXhGngSXIoQY6sVn6_PpfBdFJwRfEIzpJcUkngwwoTRme1GHkkT2JIuT_d-YsMPo2Lk5DqsfrgjvRIvRm7cq95WeIf8CyMKsMlrVKDdNY_Tn-0djCticWqNBe2RKNL5_RM4rHyBqjau-A181gBzYChwqrWlQAdptHuqQe2mWDmnwK2Nfj6KDUtUOjn_2bvR8PXoa3vSmd-Pb4dW0pziVvJdnIkkEiZVgZcGEzPJCUMXC94jCsihiyDJKMc9kkVBg_TyLSUEyECA4K3nOutHZNm9rzWIJzqdN5XKoa6UhlJOSPsZx6ATFgZ7-o3OztKELQUnMZYIZkTuVEFwQjiUP6nyrcmucs1Cmra0aZdcpwelmUOnfQQXOtnxV1bDeadPJ-GEQE845-wJ-lZTU</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Tian, Yunfeng</creator><creator>Shen, Zheng‐Kang</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201602</creationdate><title>Extracting the regional common‐mode component of GPS station position time series from dense continuous network</title><author>Tian, Yunfeng ; Shen, Zheng‐Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4294-cb766715a73fd379bcd72a31221a09dd5ebb2204b9d62e38cb51d1be7e743f4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Atmospheric disturbances</topic><topic>Clustering</topic><topic>Clusters</topic><topic>common‐mode component</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Deformation</topic><topic>Distance</topic><topic>Geophysics</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Networks</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Optimization</topic><topic>Origins</topic><topic>position time series</topic><topic>Positioning systems</topic><topic>Principal components analysis</topic><topic>Random noise</topic><topic>Reduction</topic><topic>Regional</topic><topic>Regional development</topic><topic>Satellite navigation systems</topic><topic>Searching</topic><topic>Spatial analysis</topic><topic>spatial correlation</topic><topic>Spatial filtering</topic><topic>Stations</topic><topic>Tectonics</topic><topic>Thresholds</topic><topic>Time series</topic><topic>transient</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Yunfeng</creatorcontrib><creatorcontrib>Shen, Zheng‐Kang</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Yunfeng</au><au>Shen, Zheng‐Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting the regional common‐mode component of GPS station position time series from dense continuous network</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2016-02</date><risdate>2016</risdate><volume>121</volume><issue>2</issue><spage>1080</spage><epage>1096</epage><pages>1080-1096</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common‐mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long‐term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root‐mean‐square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (&gt;13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long‐range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation‐based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics. Key Points A correlation‐weighted spatial filtering is developed for CGPS data analysis The filter achieves significant common‐mode signal reduction The filter can extract any signals common to a subset of a CGPS network</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JB012253</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of geophysical research. Solid earth, 2016-02, Vol.121 (2), p.1080-1096
issn 2169-9313
2169-9356
language eng
recordid cdi_proquest_miscellaneous_1800500020
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Atmospheric disturbances
Clustering
Clusters
common‐mode component
Correlation
Correlation analysis
Data analysis
Data processing
Deformation
Distance
Geophysics
Global positioning systems
GPS
Mathematical models
Methods
Networks
Noise
Noise prediction
Optimization
Origins
position time series
Positioning systems
Principal components analysis
Random noise
Reduction
Regional
Regional development
Satellite navigation systems
Searching
Spatial analysis
spatial correlation
Spatial filtering
Stations
Tectonics
Thresholds
Time series
transient
Weighting
title Extracting the regional common‐mode component of GPS station position time series from dense continuous network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20the%20regional%20common%E2%80%90mode%20component%20of%20GPS%20station%20position%20time%20series%20from%20dense%20continuous%20network&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=Tian,%20Yunfeng&rft.date=2016-02&rft.volume=121&rft.issue=2&rft.spage=1080&rft.epage=1096&rft.pages=1080-1096&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2015JB012253&rft_dat=%3Cproquest_cross%3E1904960319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774714094&rft_id=info:pmid/&rfr_iscdi=true