Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing

Glucose oxidase (GOD) is immobilized, for the first time, on a hierarchical nanoporous carbon (HNC) with rich functional groups by carbonizing a biomass derivation extracted from green tree leaves on a nanostructured CaCO3 template at high temperature, which exhibits fast electrooxidation for glucos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2016-01, Vol.3 (1), p.144-151
Hauptverfasser: Zhong, Xiaoling, Yuan, Weiyong, Kang, Yuejun, Xie, Jiale, Hu, Fangxin, Li, Chang Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 1
container_start_page 144
container_title ChemElectroChem
container_volume 3
creator Zhong, Xiaoling
Yuan, Weiyong
Kang, Yuejun
Xie, Jiale
Hu, Fangxin
Li, Chang Ming
description Glucose oxidase (GOD) is immobilized, for the first time, on a hierarchical nanoporous carbon (HNC) with rich functional groups by carbonizing a biomass derivation extracted from green tree leaves on a nanostructured CaCO3 template at high temperature, which exhibits fast electrooxidation for glucose and direct electron transfer (DET) when using the GOD catalyst on the new carbon support, delivering 6 and 12 times higher kinetic currents for electrochemical glucose sensing without additional electron mediators compared to commercial activated carbon and conventional hierarchical nanoporous carbon, respectively. The appearance of multiple surface heteroatom functional groups, such as amines, amides and thiols, which remain when the biomass is carbonized, rather than surface hydrophilicity, is associated with the appearance of facile direct electrochemistry processes, thus offering a new insight into DET for inexpensive and highly sensitive enzymatic sensors. Turning over a new leaf: A hierarchical nanoporous carbon with rich functional groups is synthesized through CaCO3 nanoparticle‐templating biomass derivation. Glucose oxidase immobilized on this nanocarbon shows excellent direct electron‐transfer behavior. A direct electrochemistry‐based enzymatic glucose biosensor is then fabricated, demonstrating superior performance to the commercial activated carbon and conventional hierarchical nanoporous carbon materials (see picture).
doi_str_mv 10.1002/celc.201500351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800496486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800496486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4951-1af40c1d463fcd677d9959c9a24a70ecac7a3a31b3338a3a40b5c3ef57cea5a63</originalsourceid><addsrcrecordid>eNqFkUFvEzEQRlcIJKq2V86WuHBxsNdrO3uk23SLGgUJgjhak4mXOGzsYO-29MB_r6NUVcSFy8wc3htp5iuKd5xNOGPlR7Q9TkrGJWNC8lfFWclrRVnJ1euT-W1xmdKWMcY5k2Kqzoq_Vy7sICV6baO7t2ty62yEiBuH0JMF-LAPMYyJNBBXwZMHN2zIV4cbcjN6HFzwGWszsU-kC5Fcu2hxoLM-1xg8XUbwqbORXkHK29t-xJAs-WZ9cv7nRfGmgz7Zy-d-Xny_mS2bWzr_0n5uPs0pVrXklENXMeTrSokO10rrdV3LGmsoK9DMIqAGAYKvhBDTPFVsJVHYTmq0IEGJ8-LDce8-ht-jTYPZuZRf1oO3-TjDp4xVtaqmB_T9P-g2jDFfmSktVX5cKXSmJkcKY0gp2s7so9tBfDScmUMg5hCIeQkkC_VReHC9ffwPbZrZvDl16dF1abB_XlyIv4zSQkvzY9EaseB35bJcmFY8ASZAnxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756110237</pqid></control><display><type>article</type><title>Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing</title><source>Access via Wiley Online Library</source><creator>Zhong, Xiaoling ; Yuan, Weiyong ; Kang, Yuejun ; Xie, Jiale ; Hu, Fangxin ; Li, Chang Ming</creator><creatorcontrib>Zhong, Xiaoling ; Yuan, Weiyong ; Kang, Yuejun ; Xie, Jiale ; Hu, Fangxin ; Li, Chang Ming</creatorcontrib><description>Glucose oxidase (GOD) is immobilized, for the first time, on a hierarchical nanoporous carbon (HNC) with rich functional groups by carbonizing a biomass derivation extracted from green tree leaves on a nanostructured CaCO3 template at high temperature, which exhibits fast electrooxidation for glucose and direct electron transfer (DET) when using the GOD catalyst on the new carbon support, delivering 6 and 12 times higher kinetic currents for electrochemical glucose sensing without additional electron mediators compared to commercial activated carbon and conventional hierarchical nanoporous carbon, respectively. The appearance of multiple surface heteroatom functional groups, such as amines, amides and thiols, which remain when the biomass is carbonized, rather than surface hydrophilicity, is associated with the appearance of facile direct electrochemistry processes, thus offering a new insight into DET for inexpensive and highly sensitive enzymatic sensors. Turning over a new leaf: A hierarchical nanoporous carbon with rich functional groups is synthesized through CaCO3 nanoparticle‐templating biomass derivation. Glucose oxidase immobilized on this nanocarbon shows excellent direct electron‐transfer behavior. A direct electrochemistry‐based enzymatic glucose biosensor is then fabricated, demonstrating superior performance to the commercial activated carbon and conventional hierarchical nanoporous carbon materials (see picture).</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201500351</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Biomass ; Calcium carbonate ; Carbon ; Derivation ; direct electrochemistry ; Functional groups ; functionalized hierarchical nanocarbon ; Glucose ; glucose biosensors ; Nanostructure ; nanostructures ; Surface chemistry</subject><ispartof>ChemElectroChem, 2016-01, Vol.3 (1), p.144-151</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4951-1af40c1d463fcd677d9959c9a24a70ecac7a3a31b3338a3a40b5c3ef57cea5a63</citedby><cites>FETCH-LOGICAL-c4951-1af40c1d463fcd677d9959c9a24a70ecac7a3a31b3338a3a40b5c3ef57cea5a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201500351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201500351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhong, Xiaoling</creatorcontrib><creatorcontrib>Yuan, Weiyong</creatorcontrib><creatorcontrib>Kang, Yuejun</creatorcontrib><creatorcontrib>Xie, Jiale</creatorcontrib><creatorcontrib>Hu, Fangxin</creatorcontrib><creatorcontrib>Li, Chang Ming</creatorcontrib><title>Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing</title><title>ChemElectroChem</title><addtitle>ChemElectroChem</addtitle><description>Glucose oxidase (GOD) is immobilized, for the first time, on a hierarchical nanoporous carbon (HNC) with rich functional groups by carbonizing a biomass derivation extracted from green tree leaves on a nanostructured CaCO3 template at high temperature, which exhibits fast electrooxidation for glucose and direct electron transfer (DET) when using the GOD catalyst on the new carbon support, delivering 6 and 12 times higher kinetic currents for electrochemical glucose sensing without additional electron mediators compared to commercial activated carbon and conventional hierarchical nanoporous carbon, respectively. The appearance of multiple surface heteroatom functional groups, such as amines, amides and thiols, which remain when the biomass is carbonized, rather than surface hydrophilicity, is associated with the appearance of facile direct electrochemistry processes, thus offering a new insight into DET for inexpensive and highly sensitive enzymatic sensors. Turning over a new leaf: A hierarchical nanoporous carbon with rich functional groups is synthesized through CaCO3 nanoparticle‐templating biomass derivation. Glucose oxidase immobilized on this nanocarbon shows excellent direct electron‐transfer behavior. A direct electrochemistry‐based enzymatic glucose biosensor is then fabricated, demonstrating superior performance to the commercial activated carbon and conventional hierarchical nanoporous carbon materials (see picture).</description><subject>Biomass</subject><subject>Calcium carbonate</subject><subject>Carbon</subject><subject>Derivation</subject><subject>direct electrochemistry</subject><subject>Functional groups</subject><subject>functionalized hierarchical nanocarbon</subject><subject>Glucose</subject><subject>glucose biosensors</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>Surface chemistry</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvEzEQRlcIJKq2V86WuHBxsNdrO3uk23SLGgUJgjhak4mXOGzsYO-29MB_r6NUVcSFy8wc3htp5iuKd5xNOGPlR7Q9TkrGJWNC8lfFWclrRVnJ1euT-W1xmdKWMcY5k2Kqzoq_Vy7sICV6baO7t2ty62yEiBuH0JMF-LAPMYyJNBBXwZMHN2zIV4cbcjN6HFzwGWszsU-kC5Fcu2hxoLM-1xg8XUbwqbORXkHK29t-xJAs-WZ9cv7nRfGmgz7Zy-d-Xny_mS2bWzr_0n5uPs0pVrXklENXMeTrSokO10rrdV3LGmsoK9DMIqAGAYKvhBDTPFVsJVHYTmq0IEGJ8-LDce8-ht-jTYPZuZRf1oO3-TjDp4xVtaqmB_T9P-g2jDFfmSktVX5cKXSmJkcKY0gp2s7so9tBfDScmUMg5hCIeQkkC_VReHC9ffwPbZrZvDl16dF1abB_XlyIv4zSQkvzY9EaseB35bJcmFY8ASZAnxo</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Zhong, Xiaoling</creator><creator>Yuan, Weiyong</creator><creator>Kang, Yuejun</creator><creator>Xie, Jiale</creator><creator>Hu, Fangxin</creator><creator>Li, Chang Ming</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201601</creationdate><title>Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing</title><author>Zhong, Xiaoling ; Yuan, Weiyong ; Kang, Yuejun ; Xie, Jiale ; Hu, Fangxin ; Li, Chang Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4951-1af40c1d463fcd677d9959c9a24a70ecac7a3a31b3338a3a40b5c3ef57cea5a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomass</topic><topic>Calcium carbonate</topic><topic>Carbon</topic><topic>Derivation</topic><topic>direct electrochemistry</topic><topic>Functional groups</topic><topic>functionalized hierarchical nanocarbon</topic><topic>Glucose</topic><topic>glucose biosensors</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Xiaoling</creatorcontrib><creatorcontrib>Yuan, Weiyong</creatorcontrib><creatorcontrib>Kang, Yuejun</creatorcontrib><creatorcontrib>Xie, Jiale</creatorcontrib><creatorcontrib>Hu, Fangxin</creatorcontrib><creatorcontrib>Li, Chang Ming</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Xiaoling</au><au>Yuan, Weiyong</au><au>Kang, Yuejun</au><au>Xie, Jiale</au><au>Hu, Fangxin</au><au>Li, Chang Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing</atitle><jtitle>ChemElectroChem</jtitle><addtitle>ChemElectroChem</addtitle><date>2016-01</date><risdate>2016</risdate><volume>3</volume><issue>1</issue><spage>144</spage><epage>151</epage><pages>144-151</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Glucose oxidase (GOD) is immobilized, for the first time, on a hierarchical nanoporous carbon (HNC) with rich functional groups by carbonizing a biomass derivation extracted from green tree leaves on a nanostructured CaCO3 template at high temperature, which exhibits fast electrooxidation for glucose and direct electron transfer (DET) when using the GOD catalyst on the new carbon support, delivering 6 and 12 times higher kinetic currents for electrochemical glucose sensing without additional electron mediators compared to commercial activated carbon and conventional hierarchical nanoporous carbon, respectively. The appearance of multiple surface heteroatom functional groups, such as amines, amides and thiols, which remain when the biomass is carbonized, rather than surface hydrophilicity, is associated with the appearance of facile direct electrochemistry processes, thus offering a new insight into DET for inexpensive and highly sensitive enzymatic sensors. Turning over a new leaf: A hierarchical nanoporous carbon with rich functional groups is synthesized through CaCO3 nanoparticle‐templating biomass derivation. Glucose oxidase immobilized on this nanocarbon shows excellent direct electron‐transfer behavior. A direct electrochemistry‐based enzymatic glucose biosensor is then fabricated, demonstrating superior performance to the commercial activated carbon and conventional hierarchical nanoporous carbon materials (see picture).</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/celc.201500351</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2016-01, Vol.3 (1), p.144-151
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_miscellaneous_1800496486
source Access via Wiley Online Library
subjects Biomass
Calcium carbonate
Carbon
Derivation
direct electrochemistry
Functional groups
functionalized hierarchical nanocarbon
Glucose
glucose biosensors
Nanostructure
nanostructures
Surface chemistry
title Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass-Derived%20Hierarchical%20Nanoporous%20Carbon%20with%20Rich%20Functional%20Groups%20for%20Direct-Electron-Transfer-Based%20Glucose%20Sensing&rft.jtitle=ChemElectroChem&rft.au=Zhong,%20Xiaoling&rft.date=2016-01&rft.volume=3&rft.issue=1&rft.spage=144&rft.epage=151&rft.pages=144-151&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201500351&rft_dat=%3Cproquest_cross%3E1800496486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756110237&rft_id=info:pmid/&rfr_iscdi=true