Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing
Glucose oxidase (GOD) is immobilized, for the first time, on a hierarchical nanoporous carbon (HNC) with rich functional groups by carbonizing a biomass derivation extracted from green tree leaves on a nanostructured CaCO3 template at high temperature, which exhibits fast electrooxidation for glucos...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2016-01, Vol.3 (1), p.144-151 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | 1 |
container_start_page | 144 |
container_title | ChemElectroChem |
container_volume | 3 |
creator | Zhong, Xiaoling Yuan, Weiyong Kang, Yuejun Xie, Jiale Hu, Fangxin Li, Chang Ming |
description | Glucose oxidase (GOD) is immobilized, for the first time, on a hierarchical nanoporous carbon (HNC) with rich functional groups by carbonizing a biomass derivation extracted from green tree leaves on a nanostructured CaCO3 template at high temperature, which exhibits fast electrooxidation for glucose and direct electron transfer (DET) when using the GOD catalyst on the new carbon support, delivering 6 and 12 times higher kinetic currents for electrochemical glucose sensing without additional electron mediators compared to commercial activated carbon and conventional hierarchical nanoporous carbon, respectively. The appearance of multiple surface heteroatom functional groups, such as amines, amides and thiols, which remain when the biomass is carbonized, rather than surface hydrophilicity, is associated with the appearance of facile direct electrochemistry processes, thus offering a new insight into DET for inexpensive and highly sensitive enzymatic sensors.
Turning over a new leaf: A hierarchical nanoporous carbon with rich functional groups is synthesized through CaCO3 nanoparticle‐templating biomass derivation. Glucose oxidase immobilized on this nanocarbon shows excellent direct electron‐transfer behavior. A direct electrochemistry‐based enzymatic glucose biosensor is then fabricated, demonstrating superior performance to the commercial activated carbon and conventional hierarchical nanoporous carbon materials (see picture). |
doi_str_mv | 10.1002/celc.201500351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800496486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800496486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4951-1af40c1d463fcd677d9959c9a24a70ecac7a3a31b3338a3a40b5c3ef57cea5a63</originalsourceid><addsrcrecordid>eNqFkUFvEzEQRlcIJKq2V86WuHBxsNdrO3uk23SLGgUJgjhak4mXOGzsYO-29MB_r6NUVcSFy8wc3htp5iuKd5xNOGPlR7Q9TkrGJWNC8lfFWclrRVnJ1euT-W1xmdKWMcY5k2Kqzoq_Vy7sICV6baO7t2ty62yEiBuH0JMF-LAPMYyJNBBXwZMHN2zIV4cbcjN6HFzwGWszsU-kC5Fcu2hxoLM-1xg8XUbwqbORXkHK29t-xJAs-WZ9cv7nRfGmgz7Zy-d-Xny_mS2bWzr_0n5uPs0pVrXklENXMeTrSokO10rrdV3LGmsoK9DMIqAGAYKvhBDTPFVsJVHYTmq0IEGJ8-LDce8-ht-jTYPZuZRf1oO3-TjDp4xVtaqmB_T9P-g2jDFfmSktVX5cKXSmJkcKY0gp2s7so9tBfDScmUMg5hCIeQkkC_VReHC9ffwPbZrZvDl16dF1abB_XlyIv4zSQkvzY9EaseB35bJcmFY8ASZAnxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756110237</pqid></control><display><type>article</type><title>Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing</title><source>Access via Wiley Online Library</source><creator>Zhong, Xiaoling ; Yuan, Weiyong ; Kang, Yuejun ; Xie, Jiale ; Hu, Fangxin ; Li, Chang Ming</creator><creatorcontrib>Zhong, Xiaoling ; Yuan, Weiyong ; Kang, Yuejun ; Xie, Jiale ; Hu, Fangxin ; Li, Chang Ming</creatorcontrib><description>Glucose oxidase (GOD) is immobilized, for the first time, on a hierarchical nanoporous carbon (HNC) with rich functional groups by carbonizing a biomass derivation extracted from green tree leaves on a nanostructured CaCO3 template at high temperature, which exhibits fast electrooxidation for glucose and direct electron transfer (DET) when using the GOD catalyst on the new carbon support, delivering 6 and 12 times higher kinetic currents for electrochemical glucose sensing without additional electron mediators compared to commercial activated carbon and conventional hierarchical nanoporous carbon, respectively. The appearance of multiple surface heteroatom functional groups, such as amines, amides and thiols, which remain when the biomass is carbonized, rather than surface hydrophilicity, is associated with the appearance of facile direct electrochemistry processes, thus offering a new insight into DET for inexpensive and highly sensitive enzymatic sensors.
Turning over a new leaf: A hierarchical nanoporous carbon with rich functional groups is synthesized through CaCO3 nanoparticle‐templating biomass derivation. Glucose oxidase immobilized on this nanocarbon shows excellent direct electron‐transfer behavior. A direct electrochemistry‐based enzymatic glucose biosensor is then fabricated, demonstrating superior performance to the commercial activated carbon and conventional hierarchical nanoporous carbon materials (see picture).</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201500351</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Biomass ; Calcium carbonate ; Carbon ; Derivation ; direct electrochemistry ; Functional groups ; functionalized hierarchical nanocarbon ; Glucose ; glucose biosensors ; Nanostructure ; nanostructures ; Surface chemistry</subject><ispartof>ChemElectroChem, 2016-01, Vol.3 (1), p.144-151</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4951-1af40c1d463fcd677d9959c9a24a70ecac7a3a31b3338a3a40b5c3ef57cea5a63</citedby><cites>FETCH-LOGICAL-c4951-1af40c1d463fcd677d9959c9a24a70ecac7a3a31b3338a3a40b5c3ef57cea5a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201500351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201500351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhong, Xiaoling</creatorcontrib><creatorcontrib>Yuan, Weiyong</creatorcontrib><creatorcontrib>Kang, Yuejun</creatorcontrib><creatorcontrib>Xie, Jiale</creatorcontrib><creatorcontrib>Hu, Fangxin</creatorcontrib><creatorcontrib>Li, Chang Ming</creatorcontrib><title>Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing</title><title>ChemElectroChem</title><addtitle>ChemElectroChem</addtitle><description>Glucose oxidase (GOD) is immobilized, for the first time, on a hierarchical nanoporous carbon (HNC) with rich functional groups by carbonizing a biomass derivation extracted from green tree leaves on a nanostructured CaCO3 template at high temperature, which exhibits fast electrooxidation for glucose and direct electron transfer (DET) when using the GOD catalyst on the new carbon support, delivering 6 and 12 times higher kinetic currents for electrochemical glucose sensing without additional electron mediators compared to commercial activated carbon and conventional hierarchical nanoporous carbon, respectively. The appearance of multiple surface heteroatom functional groups, such as amines, amides and thiols, which remain when the biomass is carbonized, rather than surface hydrophilicity, is associated with the appearance of facile direct electrochemistry processes, thus offering a new insight into DET for inexpensive and highly sensitive enzymatic sensors.
Turning over a new leaf: A hierarchical nanoporous carbon with rich functional groups is synthesized through CaCO3 nanoparticle‐templating biomass derivation. Glucose oxidase immobilized on this nanocarbon shows excellent direct electron‐transfer behavior. A direct electrochemistry‐based enzymatic glucose biosensor is then fabricated, demonstrating superior performance to the commercial activated carbon and conventional hierarchical nanoporous carbon materials (see picture).</description><subject>Biomass</subject><subject>Calcium carbonate</subject><subject>Carbon</subject><subject>Derivation</subject><subject>direct electrochemistry</subject><subject>Functional groups</subject><subject>functionalized hierarchical nanocarbon</subject><subject>Glucose</subject><subject>glucose biosensors</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>Surface chemistry</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvEzEQRlcIJKq2V86WuHBxsNdrO3uk23SLGgUJgjhak4mXOGzsYO-29MB_r6NUVcSFy8wc3htp5iuKd5xNOGPlR7Q9TkrGJWNC8lfFWclrRVnJ1euT-W1xmdKWMcY5k2Kqzoq_Vy7sICV6baO7t2ty62yEiBuH0JMF-LAPMYyJNBBXwZMHN2zIV4cbcjN6HFzwGWszsU-kC5Fcu2hxoLM-1xg8XUbwqbORXkHK29t-xJAs-WZ9cv7nRfGmgz7Zy-d-Xny_mS2bWzr_0n5uPs0pVrXklENXMeTrSokO10rrdV3LGmsoK9DMIqAGAYKvhBDTPFVsJVHYTmq0IEGJ8-LDce8-ht-jTYPZuZRf1oO3-TjDp4xVtaqmB_T9P-g2jDFfmSktVX5cKXSmJkcKY0gp2s7so9tBfDScmUMg5hCIeQkkC_VReHC9ffwPbZrZvDl16dF1abB_XlyIv4zSQkvzY9EaseB35bJcmFY8ASZAnxo</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Zhong, Xiaoling</creator><creator>Yuan, Weiyong</creator><creator>Kang, Yuejun</creator><creator>Xie, Jiale</creator><creator>Hu, Fangxin</creator><creator>Li, Chang Ming</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201601</creationdate><title>Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing</title><author>Zhong, Xiaoling ; Yuan, Weiyong ; Kang, Yuejun ; Xie, Jiale ; Hu, Fangxin ; Li, Chang Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4951-1af40c1d463fcd677d9959c9a24a70ecac7a3a31b3338a3a40b5c3ef57cea5a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomass</topic><topic>Calcium carbonate</topic><topic>Carbon</topic><topic>Derivation</topic><topic>direct electrochemistry</topic><topic>Functional groups</topic><topic>functionalized hierarchical nanocarbon</topic><topic>Glucose</topic><topic>glucose biosensors</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Xiaoling</creatorcontrib><creatorcontrib>Yuan, Weiyong</creatorcontrib><creatorcontrib>Kang, Yuejun</creatorcontrib><creatorcontrib>Xie, Jiale</creatorcontrib><creatorcontrib>Hu, Fangxin</creatorcontrib><creatorcontrib>Li, Chang Ming</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Xiaoling</au><au>Yuan, Weiyong</au><au>Kang, Yuejun</au><au>Xie, Jiale</au><au>Hu, Fangxin</au><au>Li, Chang Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing</atitle><jtitle>ChemElectroChem</jtitle><addtitle>ChemElectroChem</addtitle><date>2016-01</date><risdate>2016</risdate><volume>3</volume><issue>1</issue><spage>144</spage><epage>151</epage><pages>144-151</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Glucose oxidase (GOD) is immobilized, for the first time, on a hierarchical nanoporous carbon (HNC) with rich functional groups by carbonizing a biomass derivation extracted from green tree leaves on a nanostructured CaCO3 template at high temperature, which exhibits fast electrooxidation for glucose and direct electron transfer (DET) when using the GOD catalyst on the new carbon support, delivering 6 and 12 times higher kinetic currents for electrochemical glucose sensing without additional electron mediators compared to commercial activated carbon and conventional hierarchical nanoporous carbon, respectively. The appearance of multiple surface heteroatom functional groups, such as amines, amides and thiols, which remain when the biomass is carbonized, rather than surface hydrophilicity, is associated with the appearance of facile direct electrochemistry processes, thus offering a new insight into DET for inexpensive and highly sensitive enzymatic sensors.
Turning over a new leaf: A hierarchical nanoporous carbon with rich functional groups is synthesized through CaCO3 nanoparticle‐templating biomass derivation. Glucose oxidase immobilized on this nanocarbon shows excellent direct electron‐transfer behavior. A direct electrochemistry‐based enzymatic glucose biosensor is then fabricated, demonstrating superior performance to the commercial activated carbon and conventional hierarchical nanoporous carbon materials (see picture).</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/celc.201500351</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2016-01, Vol.3 (1), p.144-151 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800496486 |
source | Access via Wiley Online Library |
subjects | Biomass Calcium carbonate Carbon Derivation direct electrochemistry Functional groups functionalized hierarchical nanocarbon Glucose glucose biosensors Nanostructure nanostructures Surface chemistry |
title | Biomass-Derived Hierarchical Nanoporous Carbon with Rich Functional Groups for Direct-Electron-Transfer-Based Glucose Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomass-Derived%20Hierarchical%20Nanoporous%20Carbon%20with%20Rich%20Functional%20Groups%20for%20Direct-Electron-Transfer-Based%20Glucose%20Sensing&rft.jtitle=ChemElectroChem&rft.au=Zhong,%20Xiaoling&rft.date=2016-01&rft.volume=3&rft.issue=1&rft.spage=144&rft.epage=151&rft.pages=144-151&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201500351&rft_dat=%3Cproquest_cross%3E1800496486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756110237&rft_id=info:pmid/&rfr_iscdi=true |