Jacobi orthogonal approximation with negative integer and its application to ordinary differential equations

In this paper, the Jacobi spectral method for ordinary differential equations, which is based on the Jacobi approximation with negative integer, is proposed. This method is very efficient for the initial value problem of ordinary differential equations. The global convergence of proposed algorithm i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2015-07, Vol.2015 (1), p.1-15, Article 237
Hauptverfasser: Zhang, Xiao-yong, Wan, Zheng-su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 1
container_title Advances in difference equations
container_volume 2015
creator Zhang, Xiao-yong
Wan, Zheng-su
description In this paper, the Jacobi spectral method for ordinary differential equations, which is based on the Jacobi approximation with negative integer, is proposed. This method is very efficient for the initial value problem of ordinary differential equations. The global convergence of proposed algorithm is proved. Numerical results demonstrate the spectral accuracy of this new approach and coincide well with theoretical analysis.
doi_str_mv 10.1186/s13662-015-0562-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800496242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800496242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-fda10d262a500a9d2c1801f11b501dc4ff457db15672027454d1d49cf76787e93</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsFZ_gLcFL15WM9lssnuU4icFL3oO6SZpU7ZJm2TV9tebuh6K4Glm4HlfmCfLLgHdANT0NkBJKS4QVAWq0rI7ykZAa1ZATdjxwX6anYWwRAg3pK5HWfciWjczufNx4ebOii4X67V3X2YlonE2_zRxkVs1T9eHyo2Naq58LqzMTQx7tjPtQEaXWqSxwm9zabRWXtloUqHa9D9EOM9OtOiCuvid4-z94f5t8lRMXx-fJ3fToi0JiYWWApDEFIsKIdFI3EKNQAPMKgSyJVqTiskZVJRhhBmpiARJmlYzymqmmnKcXQ-96ZFNr0LkKxNa1XXCKtcHnuoQaSgmOKFXf9Cl633SkCiGEKIlZVWiYKBa70LwSvO1T4L8lgPie_988M-Tf773z3cpg4dMSKxN0g6a_w19A5lKijk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700063675</pqid></control><display><type>article</type><title>Jacobi orthogonal approximation with negative integer and its application to ordinary differential equations</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Xiao-yong ; Wan, Zheng-su</creator><creatorcontrib>Zhang, Xiao-yong ; Wan, Zheng-su</creatorcontrib><description>In this paper, the Jacobi spectral method for ordinary differential equations, which is based on the Jacobi approximation with negative integer, is proposed. This method is very efficient for the initial value problem of ordinary differential equations. The global convergence of proposed algorithm is proved. Numerical results demonstrate the spectral accuracy of this new approach and coincide well with theoretical analysis.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-015-0562-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Approximation ; Convergence ; Difference and Functional Equations ; Differential equations ; Functional Analysis ; Integers ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Spectra ; Spectral methods</subject><ispartof>Advances in difference equations, 2015-07, Vol.2015 (1), p.1-15, Article 237</ispartof><rights>Zhang and Wan 2015</rights><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-fda10d262a500a9d2c1801f11b501dc4ff457db15672027454d1d49cf76787e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Xiao-yong</creatorcontrib><creatorcontrib>Wan, Zheng-su</creatorcontrib><title>Jacobi orthogonal approximation with negative integer and its application to ordinary differential equations</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>In this paper, the Jacobi spectral method for ordinary differential equations, which is based on the Jacobi approximation with negative integer, is proposed. This method is very efficient for the initial value problem of ordinary differential equations. The global convergence of proposed algorithm is proved. Numerical results demonstrate the spectral accuracy of this new approach and coincide well with theoretical analysis.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Functional Analysis</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Spectra</subject><subject>Spectral methods</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhhdRsFZ_gLcFL15WM9lssnuU4icFL3oO6SZpU7ZJm2TV9tebuh6K4Glm4HlfmCfLLgHdANT0NkBJKS4QVAWq0rI7ykZAa1ZATdjxwX6anYWwRAg3pK5HWfciWjczufNx4ebOii4X67V3X2YlonE2_zRxkVs1T9eHyo2Naq58LqzMTQx7tjPtQEaXWqSxwm9zabRWXtloUqHa9D9EOM9OtOiCuvid4-z94f5t8lRMXx-fJ3fToi0JiYWWApDEFIsKIdFI3EKNQAPMKgSyJVqTiskZVJRhhBmpiARJmlYzymqmmnKcXQ-96ZFNr0LkKxNa1XXCKtcHnuoQaSgmOKFXf9Cl633SkCiGEKIlZVWiYKBa70LwSvO1T4L8lgPie_988M-Tf773z3cpg4dMSKxN0g6a_w19A5lKijk</recordid><startdate>20150730</startdate><enddate>20150730</enddate><creator>Zhang, Xiao-yong</creator><creator>Wan, Zheng-su</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150730</creationdate><title>Jacobi orthogonal approximation with negative integer and its application to ordinary differential equations</title><author>Zhang, Xiao-yong ; Wan, Zheng-su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-fda10d262a500a9d2c1801f11b501dc4ff457db15672027454d1d49cf76787e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Functional Analysis</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Spectra</topic><topic>Spectral methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiao-yong</creatorcontrib><creatorcontrib>Wan, Zheng-su</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiao-yong</au><au>Wan, Zheng-su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jacobi orthogonal approximation with negative integer and its application to ordinary differential equations</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2015-07-30</date><risdate>2015</risdate><volume>2015</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>237</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>In this paper, the Jacobi spectral method for ordinary differential equations, which is based on the Jacobi approximation with negative integer, is proposed. This method is very efficient for the initial value problem of ordinary differential equations. The global convergence of proposed algorithm is proved. Numerical results demonstrate the spectral accuracy of this new approach and coincide well with theoretical analysis.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-015-0562-z</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1847
ispartof Advances in difference equations, 2015-07, Vol.2015 (1), p.1-15, Article 237
issn 1687-1847
1687-1839
1687-1847
language eng
recordid cdi_proquest_miscellaneous_1800496242
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis
Approximation
Convergence
Difference and Functional Equations
Differential equations
Functional Analysis
Integers
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Spectra
Spectral methods
title Jacobi orthogonal approximation with negative integer and its application to ordinary differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A35%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jacobi%20orthogonal%20approximation%20with%20negative%20integer%20and%20its%20application%20to%20ordinary%20differential%20equations&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Zhang,%20Xiao-yong&rft.date=2015-07-30&rft.volume=2015&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=237&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-015-0562-z&rft_dat=%3Cproquest_cross%3E1800496242%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700063675&rft_id=info:pmid/&rfr_iscdi=true