Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source

Nonlinear diffusion equation with a polynomial source is considered. The Painlevé analysis of equation has been studied. Exact traveling wave solutions in the simplest cases have been found. Copyright © 2015 John Wiley & Sons, Ltd.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2016-02, Vol.39 (3), p.488-497
Hauptverfasser: Kudryashov, Nikolay A., Gaiur, Ilya Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 497
container_issue 3
container_start_page 488
container_title Mathematical methods in the applied sciences
container_volume 39
creator Kudryashov, Nikolay A.
Gaiur, Ilya Y.
description Nonlinear diffusion equation with a polynomial source is considered. The Painlevé analysis of equation has been studied. Exact traveling wave solutions in the simplest cases have been found. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.3497
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800496114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800496114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3957-e3f542e7dc53dcf48178127a27180f9c57458e42e2143a678b3e8df600ca7f933</originalsourceid><addsrcrecordid>eNp10N1KwzAYBuAgCs4peAkBTzypJk3bpIdj-It_yNTDENMvmJk2s2nddklehzdmhqIoeJRAnu8l34vQLiUHlJD0sK7VActKvoYGlJRlQjNerKMBoZwkWUqzTbQVwpQQIihNB0jfKNs4eH1_w6pRbhlsiJcKw0LpDgfv-s76JmBvcPcEuPGNsw2oFlfWmD7ENwwvvVohPLfdE1Z45t2y8bVVLs73rYZttGGUC7DzdQ7R3fHRZHyaXFyfnI1HF4lmZc4TYCbPUuCVzlmlTSYoFzTlKuVUEFPqnGe5gCjiFkwVXDwyEJUpCNGKm5KxIdr_zJ21_qWH0MnaBg3OqQZ8H2SMIVlZ0Dg-RHt_6DR-NRYQFc9FNEVJfwJ160NowchZa2vVLiUlctW2jG3LVduRJp90bh0s_3Xy8nL029vQweLbq_ZZFpzxXD5cncjb88k9nYyFLNgHYOaQZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1758611691</pqid></control><display><type>article</type><title>Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source</title><source>Wiley Online Library All Journals</source><creator>Kudryashov, Nikolay A. ; Gaiur, Ilya Y.</creator><creatorcontrib>Kudryashov, Nikolay A. ; Gaiur, Ilya Y.</creatorcontrib><description>Nonlinear diffusion equation with a polynomial source is considered. The Painlevé analysis of equation has been studied. Exact traveling wave solutions in the simplest cases have been found. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3497</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Blackwell Publishing Ltd</publisher><subject>Diffusion ; Exact solutions ; Mathematical analysis ; nonlinear diffusion equation ; Nonlinearity ; Painlevé analysis ; polynomial source ; Polynomials ; Traveling waves</subject><ispartof>Mathematical methods in the applied sciences, 2016-02, Vol.39 (3), p.488-497</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3957-e3f542e7dc53dcf48178127a27180f9c57458e42e2143a678b3e8df600ca7f933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3497$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3497$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Kudryashov, Nikolay A.</creatorcontrib><creatorcontrib>Gaiur, Ilya Y.</creatorcontrib><title>Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Nonlinear diffusion equation with a polynomial source is considered. The Painlevé analysis of equation has been studied. Exact traveling wave solutions in the simplest cases have been found. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Diffusion</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>nonlinear diffusion equation</subject><subject>Nonlinearity</subject><subject>Painlevé analysis</subject><subject>polynomial source</subject><subject>Polynomials</subject><subject>Traveling waves</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10N1KwzAYBuAgCs4peAkBTzypJk3bpIdj-It_yNTDENMvmJk2s2nddklehzdmhqIoeJRAnu8l34vQLiUHlJD0sK7VActKvoYGlJRlQjNerKMBoZwkWUqzTbQVwpQQIihNB0jfKNs4eH1_w6pRbhlsiJcKw0LpDgfv-s76JmBvcPcEuPGNsw2oFlfWmD7ENwwvvVohPLfdE1Z45t2y8bVVLs73rYZttGGUC7DzdQ7R3fHRZHyaXFyfnI1HF4lmZc4TYCbPUuCVzlmlTSYoFzTlKuVUEFPqnGe5gCjiFkwVXDwyEJUpCNGKm5KxIdr_zJ21_qWH0MnaBg3OqQZ8H2SMIVlZ0Dg-RHt_6DR-NRYQFc9FNEVJfwJ160NowchZa2vVLiUlctW2jG3LVduRJp90bh0s_3Xy8nL029vQweLbq_ZZFpzxXD5cncjb88k9nYyFLNgHYOaQZQ</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Kudryashov, Nikolay A.</creator><creator>Gaiur, Ilya Y.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>201602</creationdate><title>Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source</title><author>Kudryashov, Nikolay A. ; Gaiur, Ilya Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3957-e3f542e7dc53dcf48178127a27180f9c57458e42e2143a678b3e8df600ca7f933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Diffusion</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>nonlinear diffusion equation</topic><topic>Nonlinearity</topic><topic>Painlevé analysis</topic><topic>polynomial source</topic><topic>Polynomials</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudryashov, Nikolay A.</creatorcontrib><creatorcontrib>Gaiur, Ilya Y.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudryashov, Nikolay A.</au><au>Gaiur, Ilya Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2016-02</date><risdate>2016</risdate><volume>39</volume><issue>3</issue><spage>488</spage><epage>497</epage><pages>488-497</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Nonlinear diffusion equation with a polynomial source is considered. The Painlevé analysis of equation has been studied. Exact traveling wave solutions in the simplest cases have been found. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mma.3497</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2016-02, Vol.39 (3), p.488-497
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_1800496114
source Wiley Online Library All Journals
subjects Diffusion
Exact solutions
Mathematical analysis
nonlinear diffusion equation
Nonlinearity
Painlevé analysis
polynomial source
Polynomials
Traveling waves
title Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Painlev%C3%A9%20analysis%20and%20exact%20solutions%20of%20the%20nonlinear%20diffusion%20equation%20with%20a%20polynomial%20source&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kudryashov,%20Nikolay%20A.&rft.date=2016-02&rft.volume=39&rft.issue=3&rft.spage=488&rft.epage=497&rft.pages=488-497&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3497&rft_dat=%3Cproquest_cross%3E1800496114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1758611691&rft_id=info:pmid/&rfr_iscdi=true