Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source
Nonlinear diffusion equation with a polynomial source is considered. The Painlevé analysis of equation has been studied. Exact traveling wave solutions in the simplest cases have been found. Copyright © 2015 John Wiley & Sons, Ltd.
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2016-02, Vol.39 (3), p.488-497 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 497 |
---|---|
container_issue | 3 |
container_start_page | 488 |
container_title | Mathematical methods in the applied sciences |
container_volume | 39 |
creator | Kudryashov, Nikolay A. Gaiur, Ilya Y. |
description | Nonlinear diffusion equation with a polynomial source is considered. The Painlevé analysis of equation has been studied. Exact traveling wave solutions in the simplest cases have been found. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.3497 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800496114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800496114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3957-e3f542e7dc53dcf48178127a27180f9c57458e42e2143a678b3e8df600ca7f933</originalsourceid><addsrcrecordid>eNp10N1KwzAYBuAgCs4peAkBTzypJk3bpIdj-It_yNTDENMvmJk2s2nddklehzdmhqIoeJRAnu8l34vQLiUHlJD0sK7VActKvoYGlJRlQjNerKMBoZwkWUqzTbQVwpQQIihNB0jfKNs4eH1_w6pRbhlsiJcKw0LpDgfv-s76JmBvcPcEuPGNsw2oFlfWmD7ENwwvvVohPLfdE1Z45t2y8bVVLs73rYZttGGUC7DzdQ7R3fHRZHyaXFyfnI1HF4lmZc4TYCbPUuCVzlmlTSYoFzTlKuVUEFPqnGe5gCjiFkwVXDwyEJUpCNGKm5KxIdr_zJ21_qWH0MnaBg3OqQZ8H2SMIVlZ0Dg-RHt_6DR-NRYQFc9FNEVJfwJ160NowchZa2vVLiUlctW2jG3LVduRJp90bh0s_3Xy8nL029vQweLbq_ZZFpzxXD5cncjb88k9nYyFLNgHYOaQZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1758611691</pqid></control><display><type>article</type><title>Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source</title><source>Wiley Online Library All Journals</source><creator>Kudryashov, Nikolay A. ; Gaiur, Ilya Y.</creator><creatorcontrib>Kudryashov, Nikolay A. ; Gaiur, Ilya Y.</creatorcontrib><description>Nonlinear diffusion equation with a polynomial source is considered. The Painlevé analysis of equation has been studied. Exact traveling wave solutions in the simplest cases have been found. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3497</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Blackwell Publishing Ltd</publisher><subject>Diffusion ; Exact solutions ; Mathematical analysis ; nonlinear diffusion equation ; Nonlinearity ; Painlevé analysis ; polynomial source ; Polynomials ; Traveling waves</subject><ispartof>Mathematical methods in the applied sciences, 2016-02, Vol.39 (3), p.488-497</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3957-e3f542e7dc53dcf48178127a27180f9c57458e42e2143a678b3e8df600ca7f933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3497$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3497$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Kudryashov, Nikolay A.</creatorcontrib><creatorcontrib>Gaiur, Ilya Y.</creatorcontrib><title>Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Nonlinear diffusion equation with a polynomial source is considered. The Painlevé analysis of equation has been studied. Exact traveling wave solutions in the simplest cases have been found. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>Diffusion</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>nonlinear diffusion equation</subject><subject>Nonlinearity</subject><subject>Painlevé analysis</subject><subject>polynomial source</subject><subject>Polynomials</subject><subject>Traveling waves</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10N1KwzAYBuAgCs4peAkBTzypJk3bpIdj-It_yNTDENMvmJk2s2nddklehzdmhqIoeJRAnu8l34vQLiUHlJD0sK7VActKvoYGlJRlQjNerKMBoZwkWUqzTbQVwpQQIihNB0jfKNs4eH1_w6pRbhlsiJcKw0LpDgfv-s76JmBvcPcEuPGNsw2oFlfWmD7ENwwvvVohPLfdE1Z45t2y8bVVLs73rYZttGGUC7DzdQ7R3fHRZHyaXFyfnI1HF4lmZc4TYCbPUuCVzlmlTSYoFzTlKuVUEFPqnGe5gCjiFkwVXDwyEJUpCNGKm5KxIdr_zJ21_qWH0MnaBg3OqQZ8H2SMIVlZ0Dg-RHt_6DR-NRYQFc9FNEVJfwJ160NowchZa2vVLiUlctW2jG3LVduRJp90bh0s_3Xy8nL029vQweLbq_ZZFpzxXD5cncjb88k9nYyFLNgHYOaQZQ</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Kudryashov, Nikolay A.</creator><creator>Gaiur, Ilya Y.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>201602</creationdate><title>Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source</title><author>Kudryashov, Nikolay A. ; Gaiur, Ilya Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3957-e3f542e7dc53dcf48178127a27180f9c57458e42e2143a678b3e8df600ca7f933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Diffusion</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>nonlinear diffusion equation</topic><topic>Nonlinearity</topic><topic>Painlevé analysis</topic><topic>polynomial source</topic><topic>Polynomials</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudryashov, Nikolay A.</creatorcontrib><creatorcontrib>Gaiur, Ilya Y.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudryashov, Nikolay A.</au><au>Gaiur, Ilya Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2016-02</date><risdate>2016</risdate><volume>39</volume><issue>3</issue><spage>488</spage><epage>497</epage><pages>488-497</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Nonlinear diffusion equation with a polynomial source is considered. The Painlevé analysis of equation has been studied. Exact traveling wave solutions in the simplest cases have been found. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mma.3497</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2016-02, Vol.39 (3), p.488-497 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800496114 |
source | Wiley Online Library All Journals |
subjects | Diffusion Exact solutions Mathematical analysis nonlinear diffusion equation Nonlinearity Painlevé analysis polynomial source Polynomials Traveling waves |
title | Painlevé analysis and exact solutions of the nonlinear diffusion equation with a polynomial source |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A37%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Painlev%C3%A9%20analysis%20and%20exact%20solutions%20of%20the%20nonlinear%20diffusion%20equation%20with%20a%20polynomial%20source&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kudryashov,%20Nikolay%20A.&rft.date=2016-02&rft.volume=39&rft.issue=3&rft.spage=488&rft.epage=497&rft.pages=488-497&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3497&rft_dat=%3Cproquest_cross%3E1800496114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1758611691&rft_id=info:pmid/&rfr_iscdi=true |