Prediction of performance, combustion and emission characteristics of diesel-thermal cracked cashew nut shell liquid blends using artificial neural network
This paper explores the use of artificial neural networks (ANN) to predict performance, combustion and emissions of a single cylinder, four stroke stationary, diesel engine operated by thermal cracked cashew nut shell liquid (TC-CNSL) as the biodiesel blended with diesel. The tests were performed at...
Gespeichert in:
Veröffentlicht in: | Frontiers in Energy 2016-03, Vol.10 (1), p.114-124 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | 1 |
container_start_page | 114 |
container_title | Frontiers in Energy |
container_volume | 10 |
creator | VELMURUGAN, Arunachalam LOGANATHAN, Marimuthu GUNASEKARAN, E. James |
description | This paper explores the use of artificial neural networks (ANN) to predict performance, combustion and emissions of a single cylinder, four stroke stationary, diesel engine operated by thermal cracked cashew nut shell liquid (TC-CNSL) as the biodiesel blended with diesel. The tests were performed at three different injection timings (21°, 23°, 25℃A bTDC) by changing the thickness of the advance shim. The ANN was used to predict eight different engine-output responses, namely brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), exhaust gas temperature (EGT), carbon monoxide (CO), oxide of nitrogen (NOx), hydrocarbon (HC), maximum pressure (Pm~,,) and heat release rate (HRR). Four pertinent engine operating parameters, i.e., injection timing (IT), injection pressure (IP), blend percentage and pecentage load were used as the input parameters for this modeling work. The ANN results show that there is a good correlation between the ANN predicted values and the experimental values for various engine performances, combustion parameters and exhaust emission characteristics. The mean square error value (MSE) is 0.005621 and the regression value ofR2 is 0.99316 for training, 0.98812 for validation, 0.9841 for testing while the overall value is 0.99173. Thus the developed ANN model is fairly powerful for predicting the performance, combustion and exhaust emissions of internal combustion engines. |
doi_str_mv | 10.1007/s11708-016-0394-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800495823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668208540</cqvip_id><sourcerecordid>3974631311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-f5c8b653f67a571d4271fed62f818407015ef2746f914aa87701b63c7d35aa643</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEElXpA3Cz4MKBgO34X46oAlqpEhzgbHnt8cZt1t61HbV9Fl4Wb1MQ4tDTjD3fbzzjr-teE_yBYCw_FkIkVj0mosfDyPq7Z90JxSPviRjV8z-5xORld1bKNcaYEMyxpCfdr-8ZXLA1pIiSR3vIPuWdiRbeI5t2m6U8lEx0CHahlOPBTiYbWyGHVrTlyLkABea-TtDgGdlWvwGHrCkT3KK4VNSSeUZzOCzBoc0M0RW0lBC3yOQafLChcRGW_BDqbco3r7oX3swFzh7jaffzy-cf5xf91bevl-efrnrLKK-951ZtBB-8kIZL4hiVxIMT1CuiGG5rc_BUMuFHwoxRst1sxGClG7gxgg2n3bu17z6nwwKl6rapbeOaCGkpmiiM2cgVHZr07X_S67Tk2KbTRErC8ECZbCqyqmxOpWTwep_DzuR7TbA-OqZXx3RzTB8d03eNoStTmjZuIf_T-QlIrdAUtu3rwe0zlKJ9TrEGyE-jbx5nnFLcHtqTf4cUQlGseFvmN8J_uaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771403247</pqid></control><display><type>article</type><title>Prediction of performance, combustion and emission characteristics of diesel-thermal cracked cashew nut shell liquid blends using artificial neural network</title><source>Springer Nature - Complete Springer Journals</source><creator>VELMURUGAN, Arunachalam ; LOGANATHAN, Marimuthu ; GUNASEKARAN, E. James</creator><creatorcontrib>VELMURUGAN, Arunachalam ; LOGANATHAN, Marimuthu ; GUNASEKARAN, E. James</creatorcontrib><description>This paper explores the use of artificial neural networks (ANN) to predict performance, combustion and emissions of a single cylinder, four stroke stationary, diesel engine operated by thermal cracked cashew nut shell liquid (TC-CNSL) as the biodiesel blended with diesel. The tests were performed at three different injection timings (21°, 23°, 25℃A bTDC) by changing the thickness of the advance shim. The ANN was used to predict eight different engine-output responses, namely brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), exhaust gas temperature (EGT), carbon monoxide (CO), oxide of nitrogen (NOx), hydrocarbon (HC), maximum pressure (Pm~,,) and heat release rate (HRR). Four pertinent engine operating parameters, i.e., injection timing (IT), injection pressure (IP), blend percentage and pecentage load were used as the input parameters for this modeling work. The ANN results show that there is a good correlation between the ANN predicted values and the experimental values for various engine performances, combustion parameters and exhaust emission characteristics. The mean square error value (MSE) is 0.005621 and the regression value ofR2 is 0.99316 for training, 0.98812 for validation, 0.9841 for testing while the overall value is 0.99173. Thus the developed ANN model is fairly powerful for predicting the performance, combustion and exhaust emissions of internal combustion engines.</description><identifier>ISSN: 2095-1701</identifier><identifier>EISSN: 2095-1698</identifier><identifier>DOI: 10.1007/s11708-016-0394-x</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>artificial neural networks (ANN) ; Biodiesel fuels ; Blends ; Carbon monoxide ; cashew nut shell liquid (CNSL) ; Cashews ; Combustion ; Cylinders ; Diesel engines ; Diesel fuels ; Energy ; Energy consumption ; Energy Systems ; Engines ; Exhaust emission ; Exhaust emissions ; Heat transfer ; Injection ; Internal combustion engines ; Laboratories ; Learning theory ; Mathematical models ; mean square error (MSE) ; Mean square errors ; Neural networks ; Polymer blends ; Pressure gauges ; R&D ; Raw materials ; Regression analysis ; Research & development ; Research Article ; Studies ; Sulfur content ; Temperature ; thermal cracking ; Vegetable oils ; 人工神经网络 ; 四冲程柴油机 ; 排放特性 ; 混合使用 ; 热裂解 ; 燃烧参数 ; 腰果壳液 ; 预测性能</subject><ispartof>Frontiers in Energy, 2016-03, Vol.10 (1), p.114-124</ispartof><rights>Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-f5c8b653f67a571d4271fed62f818407015ef2746f914aa87701b63c7d35aa643</citedby><cites>FETCH-LOGICAL-c425t-f5c8b653f67a571d4271fed62f818407015ef2746f914aa87701b63c7d35aa643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71239X/71239X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11708-016-0394-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11708-016-0394-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>VELMURUGAN, Arunachalam</creatorcontrib><creatorcontrib>LOGANATHAN, Marimuthu</creatorcontrib><creatorcontrib>GUNASEKARAN, E. James</creatorcontrib><title>Prediction of performance, combustion and emission characteristics of diesel-thermal cracked cashew nut shell liquid blends using artificial neural network</title><title>Frontiers in Energy</title><addtitle>Front. Energy</addtitle><addtitle>Frontiers in Energy</addtitle><description>This paper explores the use of artificial neural networks (ANN) to predict performance, combustion and emissions of a single cylinder, four stroke stationary, diesel engine operated by thermal cracked cashew nut shell liquid (TC-CNSL) as the biodiesel blended with diesel. The tests were performed at three different injection timings (21°, 23°, 25℃A bTDC) by changing the thickness of the advance shim. The ANN was used to predict eight different engine-output responses, namely brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), exhaust gas temperature (EGT), carbon monoxide (CO), oxide of nitrogen (NOx), hydrocarbon (HC), maximum pressure (Pm~,,) and heat release rate (HRR). Four pertinent engine operating parameters, i.e., injection timing (IT), injection pressure (IP), blend percentage and pecentage load were used as the input parameters for this modeling work. The ANN results show that there is a good correlation between the ANN predicted values and the experimental values for various engine performances, combustion parameters and exhaust emission characteristics. The mean square error value (MSE) is 0.005621 and the regression value ofR2 is 0.99316 for training, 0.98812 for validation, 0.9841 for testing while the overall value is 0.99173. Thus the developed ANN model is fairly powerful for predicting the performance, combustion and exhaust emissions of internal combustion engines.</description><subject>artificial neural networks (ANN)</subject><subject>Biodiesel fuels</subject><subject>Blends</subject><subject>Carbon monoxide</subject><subject>cashew nut shell liquid (CNSL)</subject><subject>Cashews</subject><subject>Combustion</subject><subject>Cylinders</subject><subject>Diesel engines</subject><subject>Diesel fuels</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy Systems</subject><subject>Engines</subject><subject>Exhaust emission</subject><subject>Exhaust emissions</subject><subject>Heat transfer</subject><subject>Injection</subject><subject>Internal combustion engines</subject><subject>Laboratories</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>mean square error (MSE)</subject><subject>Mean square errors</subject><subject>Neural networks</subject><subject>Polymer blends</subject><subject>Pressure gauges</subject><subject>R&D</subject><subject>Raw materials</subject><subject>Regression analysis</subject><subject>Research & development</subject><subject>Research Article</subject><subject>Studies</subject><subject>Sulfur content</subject><subject>Temperature</subject><subject>thermal cracking</subject><subject>Vegetable oils</subject><subject>人工神经网络</subject><subject>四冲程柴油机</subject><subject>排放特性</subject><subject>混合使用</subject><subject>热裂解</subject><subject>燃烧参数</subject><subject>腰果壳液</subject><subject>预测性能</subject><issn>2095-1701</issn><issn>2095-1698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kc9u1DAQxiMEElXpA3Cz4MKBgO34X46oAlqpEhzgbHnt8cZt1t61HbV9Fl4Wb1MQ4tDTjD3fbzzjr-teE_yBYCw_FkIkVj0mosfDyPq7Z90JxSPviRjV8z-5xORld1bKNcaYEMyxpCfdr-8ZXLA1pIiSR3vIPuWdiRbeI5t2m6U8lEx0CHahlOPBTiYbWyGHVrTlyLkABea-TtDgGdlWvwGHrCkT3KK4VNSSeUZzOCzBoc0M0RW0lBC3yOQafLChcRGW_BDqbco3r7oX3swFzh7jaffzy-cf5xf91bevl-efrnrLKK-951ZtBB-8kIZL4hiVxIMT1CuiGG5rc_BUMuFHwoxRst1sxGClG7gxgg2n3bu17z6nwwKl6rapbeOaCGkpmiiM2cgVHZr07X_S67Tk2KbTRErC8ECZbCqyqmxOpWTwep_DzuR7TbA-OqZXx3RzTB8d03eNoStTmjZuIf_T-QlIrdAUtu3rwe0zlKJ9TrEGyE-jbx5nnFLcHtqTf4cUQlGseFvmN8J_uaA</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>VELMURUGAN, Arunachalam</creator><creator>LOGANATHAN, Marimuthu</creator><creator>GUNASEKARAN, E. James</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>88K</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20160301</creationdate><title>Prediction of performance, combustion and emission characteristics of diesel-thermal cracked cashew nut shell liquid blends using artificial neural network</title><author>VELMURUGAN, Arunachalam ; LOGANATHAN, Marimuthu ; GUNASEKARAN, E. James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-f5c8b653f67a571d4271fed62f818407015ef2746f914aa87701b63c7d35aa643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>artificial neural networks (ANN)</topic><topic>Biodiesel fuels</topic><topic>Blends</topic><topic>Carbon monoxide</topic><topic>cashew nut shell liquid (CNSL)</topic><topic>Cashews</topic><topic>Combustion</topic><topic>Cylinders</topic><topic>Diesel engines</topic><topic>Diesel fuels</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy Systems</topic><topic>Engines</topic><topic>Exhaust emission</topic><topic>Exhaust emissions</topic><topic>Heat transfer</topic><topic>Injection</topic><topic>Internal combustion engines</topic><topic>Laboratories</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>mean square error (MSE)</topic><topic>Mean square errors</topic><topic>Neural networks</topic><topic>Polymer blends</topic><topic>Pressure gauges</topic><topic>R&D</topic><topic>Raw materials</topic><topic>Regression analysis</topic><topic>Research & development</topic><topic>Research Article</topic><topic>Studies</topic><topic>Sulfur content</topic><topic>Temperature</topic><topic>thermal cracking</topic><topic>Vegetable oils</topic><topic>人工神经网络</topic><topic>四冲程柴油机</topic><topic>排放特性</topic><topic>混合使用</topic><topic>热裂解</topic><topic>燃烧参数</topic><topic>腰果壳液</topic><topic>预测性能</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VELMURUGAN, Arunachalam</creatorcontrib><creatorcontrib>LOGANATHAN, Marimuthu</creatorcontrib><creatorcontrib>GUNASEKARAN, E. James</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Frontiers in Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VELMURUGAN, Arunachalam</au><au>LOGANATHAN, Marimuthu</au><au>GUNASEKARAN, E. James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of performance, combustion and emission characteristics of diesel-thermal cracked cashew nut shell liquid blends using artificial neural network</atitle><jtitle>Frontiers in Energy</jtitle><stitle>Front. Energy</stitle><addtitle>Frontiers in Energy</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>10</volume><issue>1</issue><spage>114</spage><epage>124</epage><pages>114-124</pages><issn>2095-1701</issn><eissn>2095-1698</eissn><abstract>This paper explores the use of artificial neural networks (ANN) to predict performance, combustion and emissions of a single cylinder, four stroke stationary, diesel engine operated by thermal cracked cashew nut shell liquid (TC-CNSL) as the biodiesel blended with diesel. The tests were performed at three different injection timings (21°, 23°, 25℃A bTDC) by changing the thickness of the advance shim. The ANN was used to predict eight different engine-output responses, namely brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), exhaust gas temperature (EGT), carbon monoxide (CO), oxide of nitrogen (NOx), hydrocarbon (HC), maximum pressure (Pm~,,) and heat release rate (HRR). Four pertinent engine operating parameters, i.e., injection timing (IT), injection pressure (IP), blend percentage and pecentage load were used as the input parameters for this modeling work. The ANN results show that there is a good correlation between the ANN predicted values and the experimental values for various engine performances, combustion parameters and exhaust emission characteristics. The mean square error value (MSE) is 0.005621 and the regression value ofR2 is 0.99316 for training, 0.98812 for validation, 0.9841 for testing while the overall value is 0.99173. Thus the developed ANN model is fairly powerful for predicting the performance, combustion and exhaust emissions of internal combustion engines.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11708-016-0394-x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-1701 |
ispartof | Frontiers in Energy, 2016-03, Vol.10 (1), p.114-124 |
issn | 2095-1701 2095-1698 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800495823 |
source | Springer Nature - Complete Springer Journals |
subjects | artificial neural networks (ANN) Biodiesel fuels Blends Carbon monoxide cashew nut shell liquid (CNSL) Cashews Combustion Cylinders Diesel engines Diesel fuels Energy Energy consumption Energy Systems Engines Exhaust emission Exhaust emissions Heat transfer Injection Internal combustion engines Laboratories Learning theory Mathematical models mean square error (MSE) Mean square errors Neural networks Polymer blends Pressure gauges R&D Raw materials Regression analysis Research & development Research Article Studies Sulfur content Temperature thermal cracking Vegetable oils 人工神经网络 四冲程柴油机 排放特性 混合使用 热裂解 燃烧参数 腰果壳液 预测性能 |
title | Prediction of performance, combustion and emission characteristics of diesel-thermal cracked cashew nut shell liquid blends using artificial neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20performance,%20combustion%20and%20emission%20characteristics%20of%20diesel-thermal%20cracked%20cashew%20nut%20shell%20liquid%20blends%20using%20artificial%20neural%20network&rft.jtitle=Frontiers%20in%20Energy&rft.au=VELMURUGAN,%20Arunachalam&rft.date=2016-03-01&rft.volume=10&rft.issue=1&rft.spage=114&rft.epage=124&rft.pages=114-124&rft.issn=2095-1701&rft.eissn=2095-1698&rft_id=info:doi/10.1007/s11708-016-0394-x&rft_dat=%3Cproquest_cross%3E3974631311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771403247&rft_id=info:pmid/&rft_cqvip_id=668208540&rfr_iscdi=true |