Manufacturing an active X-ray mirror prototype in thin glass
Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free‐electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X‐ray mirrors for astro...
Gespeichert in:
Veröffentlicht in: | Journal of synchrotron radiation 2016-01, Vol.23 (1), p.59-66 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 1 |
container_start_page | 59 |
container_title | Journal of synchrotron radiation |
container_volume | 23 |
creator | Spiga, D. Barbera, M. Collura, A. Basso, S. Candia, R. Civitani, M. Di Bella, M. S. Di Cicca, G. Lo Cicero, U. Lullo, G. Pelliciari, C. Riva, M. Salmaso, B. Sciortino, L. Varisco, S. |
description | Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free‐electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X‐ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported here relies on actively integrating thin glass foils with commercial piezoceramic patches, fed by voltages driven by the feedback provided by X‐rays, while the tension signals are carried by electrodes on the back of the mirror, obtained by photolithography. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array will be determined by X‐ray illumination in an intra‐focal setup at the XACT facility. In this work, the manufacturing steps for obtaining a first active mirror prototype are described. |
doi_str_mv | 10.1107/S1600577515017142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800495761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3932822791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4504-1a847fd782978da1d48df6cf9ea63a09dd6924d86c9fc2012b5754457fe49faa3</originalsourceid><addsrcrecordid>eNqFkUtOHDEQhq0IlAGSA2QTtcSGTQeX289FFmgEM7zyEETAyjLd9sTQ0z3Y3ZC5DWfhZHg0gCJYsHKp9H2_XFUIfQH8DQCL7RPgGDMhGDAMAij5gNYWrXzRW_mvHqD1GK8wBi5I8RENCOdKYsrX0Pdj0_TOlF0ffDPJTJOl2t_a7DwPZp5NfQhtyGah7dpuPrOZbx7uu7--ySa1ifETWnWmjvbz07uB_uztng7H-dHP0f5w5ygvKcM0ByOpcJWQRAlZGaiorBwvnbKGFwarquKK0EryUrmSYCCXTDBKmXCWKmdMsYG2lrnpIze9jZ2e-ljaujaNbfuoQWJMFRMc3kcFIwUDCiyhm6_Qq7YPTRokUWl1QlEiEwVLqgxtjME6PQt-asJcA9aLM-g3Z0jO16fk_nJqqxfjee8JUEvgztd2_n6iPji5IOenLI2Z3Hzp-tjZfy-uCdeai0IwffZjpCX7fVYc8rH-VTwCCt6gRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760079428</pqid></control><display><type>article</type><title>Manufacturing an active X-ray mirror prototype in thin glass</title><source>Wiley Online Library Open Access</source><creator>Spiga, D. ; Barbera, M. ; Collura, A. ; Basso, S. ; Candia, R. ; Civitani, M. ; Di Bella, M. S. ; Di Cicca, G. ; Lo Cicero, U. ; Lullo, G. ; Pelliciari, C. ; Riva, M. ; Salmaso, B. ; Sciortino, L. ; Varisco, S.</creator><creatorcontrib>Spiga, D. ; Barbera, M. ; Collura, A. ; Basso, S. ; Candia, R. ; Civitani, M. ; Di Bella, M. S. ; Di Cicca, G. ; Lo Cicero, U. ; Lullo, G. ; Pelliciari, C. ; Riva, M. ; Salmaso, B. ; Sciortino, L. ; Varisco, S.</creatorcontrib><description>Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free‐electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X‐ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported here relies on actively integrating thin glass foils with commercial piezoceramic patches, fed by voltages driven by the feedback provided by X‐rays, while the tension signals are carried by electrodes on the back of the mirror, obtained by photolithography. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array will be determined by X‐ray illumination in an intra‐focal setup at the XACT facility. In this work, the manufacturing steps for obtaining a first active mirror prototype are described.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S1600577515017142</identifier><identifier>PMID: 26698046</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Active mirrors ; active optics ; Design engineering ; Electric potential ; Glass ; Piezoelectric actuators ; Prototypes ; thin glass mirrors ; Voltage ; X-ray mirrors ; X-rays</subject><ispartof>Journal of synchrotron radiation, 2016-01, Vol.23 (1), p.59-66</ispartof><rights>International Union of Crystallography, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4504-1a847fd782978da1d48df6cf9ea63a09dd6924d86c9fc2012b5754457fe49faa3</citedby><cites>FETCH-LOGICAL-c4504-1a847fd782978da1d48df6cf9ea63a09dd6924d86c9fc2012b5754457fe49faa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600577515017142$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600577515017142$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS1600577515017142$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26698046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spiga, D.</creatorcontrib><creatorcontrib>Barbera, M.</creatorcontrib><creatorcontrib>Collura, A.</creatorcontrib><creatorcontrib>Basso, S.</creatorcontrib><creatorcontrib>Candia, R.</creatorcontrib><creatorcontrib>Civitani, M.</creatorcontrib><creatorcontrib>Di Bella, M. S.</creatorcontrib><creatorcontrib>Di Cicca, G.</creatorcontrib><creatorcontrib>Lo Cicero, U.</creatorcontrib><creatorcontrib>Lullo, G.</creatorcontrib><creatorcontrib>Pelliciari, C.</creatorcontrib><creatorcontrib>Riva, M.</creatorcontrib><creatorcontrib>Salmaso, B.</creatorcontrib><creatorcontrib>Sciortino, L.</creatorcontrib><creatorcontrib>Varisco, S.</creatorcontrib><title>Manufacturing an active X-ray mirror prototype in thin glass</title><title>Journal of synchrotron radiation</title><addtitle>Jnl of Synchrotron Radiation</addtitle><description>Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free‐electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X‐ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported here relies on actively integrating thin glass foils with commercial piezoceramic patches, fed by voltages driven by the feedback provided by X‐rays, while the tension signals are carried by electrodes on the back of the mirror, obtained by photolithography. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array will be determined by X‐ray illumination in an intra‐focal setup at the XACT facility. In this work, the manufacturing steps for obtaining a first active mirror prototype are described.</description><subject>Active mirrors</subject><subject>active optics</subject><subject>Design engineering</subject><subject>Electric potential</subject><subject>Glass</subject><subject>Piezoelectric actuators</subject><subject>Prototypes</subject><subject>thin glass mirrors</subject><subject>Voltage</subject><subject>X-ray mirrors</subject><subject>X-rays</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUtOHDEQhq0IlAGSA2QTtcSGTQeX289FFmgEM7zyEETAyjLd9sTQ0z3Y3ZC5DWfhZHg0gCJYsHKp9H2_XFUIfQH8DQCL7RPgGDMhGDAMAij5gNYWrXzRW_mvHqD1GK8wBi5I8RENCOdKYsrX0Pdj0_TOlF0ffDPJTJOl2t_a7DwPZp5NfQhtyGah7dpuPrOZbx7uu7--ySa1ifETWnWmjvbz07uB_uztng7H-dHP0f5w5ygvKcM0ByOpcJWQRAlZGaiorBwvnbKGFwarquKK0EryUrmSYCCXTDBKmXCWKmdMsYG2lrnpIze9jZ2e-ljaujaNbfuoQWJMFRMc3kcFIwUDCiyhm6_Qq7YPTRokUWl1QlEiEwVLqgxtjME6PQt-asJcA9aLM-g3Z0jO16fk_nJqqxfjee8JUEvgztd2_n6iPji5IOenLI2Z3Hzp-tjZfy-uCdeai0IwffZjpCX7fVYc8rH-VTwCCt6gRw</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Spiga, D.</creator><creator>Barbera, M.</creator><creator>Collura, A.</creator><creator>Basso, S.</creator><creator>Candia, R.</creator><creator>Civitani, M.</creator><creator>Di Bella, M. S.</creator><creator>Di Cicca, G.</creator><creator>Lo Cicero, U.</creator><creator>Lullo, G.</creator><creator>Pelliciari, C.</creator><creator>Riva, M.</creator><creator>Salmaso, B.</creator><creator>Sciortino, L.</creator><creator>Varisco, S.</creator><general>International Union of Crystallography</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20160101</creationdate><title>Manufacturing an active X-ray mirror prototype in thin glass</title><author>Spiga, D. ; Barbera, M. ; Collura, A. ; Basso, S. ; Candia, R. ; Civitani, M. ; Di Bella, M. S. ; Di Cicca, G. ; Lo Cicero, U. ; Lullo, G. ; Pelliciari, C. ; Riva, M. ; Salmaso, B. ; Sciortino, L. ; Varisco, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4504-1a847fd782978da1d48df6cf9ea63a09dd6924d86c9fc2012b5754457fe49faa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Active mirrors</topic><topic>active optics</topic><topic>Design engineering</topic><topic>Electric potential</topic><topic>Glass</topic><topic>Piezoelectric actuators</topic><topic>Prototypes</topic><topic>thin glass mirrors</topic><topic>Voltage</topic><topic>X-ray mirrors</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spiga, D.</creatorcontrib><creatorcontrib>Barbera, M.</creatorcontrib><creatorcontrib>Collura, A.</creatorcontrib><creatorcontrib>Basso, S.</creatorcontrib><creatorcontrib>Candia, R.</creatorcontrib><creatorcontrib>Civitani, M.</creatorcontrib><creatorcontrib>Di Bella, M. S.</creatorcontrib><creatorcontrib>Di Cicca, G.</creatorcontrib><creatorcontrib>Lo Cicero, U.</creatorcontrib><creatorcontrib>Lullo, G.</creatorcontrib><creatorcontrib>Pelliciari, C.</creatorcontrib><creatorcontrib>Riva, M.</creatorcontrib><creatorcontrib>Salmaso, B.</creatorcontrib><creatorcontrib>Sciortino, L.</creatorcontrib><creatorcontrib>Varisco, S.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spiga, D.</au><au>Barbera, M.</au><au>Collura, A.</au><au>Basso, S.</au><au>Candia, R.</au><au>Civitani, M.</au><au>Di Bella, M. S.</au><au>Di Cicca, G.</au><au>Lo Cicero, U.</au><au>Lullo, G.</au><au>Pelliciari, C.</au><au>Riva, M.</au><au>Salmaso, B.</au><au>Sciortino, L.</au><au>Varisco, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacturing an active X-ray mirror prototype in thin glass</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>Jnl of Synchrotron Radiation</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>23</volume><issue>1</issue><spage>59</spage><epage>66</epage><pages>59-66</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free‐electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X‐ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported here relies on actively integrating thin glass foils with commercial piezoceramic patches, fed by voltages driven by the feedback provided by X‐rays, while the tension signals are carried by electrodes on the back of the mirror, obtained by photolithography. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array will be determined by X‐ray illumination in an intra‐focal setup at the XACT facility. In this work, the manufacturing steps for obtaining a first active mirror prototype are described.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>26698046</pmid><doi>10.1107/S1600577515017142</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1600-5775 |
ispartof | Journal of synchrotron radiation, 2016-01, Vol.23 (1), p.59-66 |
issn | 1600-5775 0909-0495 1600-5775 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800495761 |
source | Wiley Online Library Open Access |
subjects | Active mirrors active optics Design engineering Electric potential Glass Piezoelectric actuators Prototypes thin glass mirrors Voltage X-ray mirrors X-rays |
title | Manufacturing an active X-ray mirror prototype in thin glass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A37%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacturing%20an%20active%20X-ray%20mirror%20prototype%20in%C2%A0thin%20glass&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Spiga,%20D.&rft.date=2016-01-01&rft.volume=23&rft.issue=1&rft.spage=59&rft.epage=66&rft.pages=59-66&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S1600577515017142&rft_dat=%3Cproquest_24P%3E3932822791%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760079428&rft_id=info:pmid/26698046&rfr_iscdi=true |