Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation

Combining cationic ruthenium photosensitizers (RuPS) with anionic polyoxometalate water oxidation catalysts (POM‐WOCs) is the standard approach for light‐driven POM‐based water oxidation. Here, we show that colloid formation by electrostatic aggregation of a molecular photosensitizer {e.g., [Ru(bpy)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of inorganic chemistry 2016-03, Vol.2016 (9), p.1425-1429
Hauptverfasser: Kirchhoff, Björn, Rau, Sven, Streb, Carsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1429
container_issue 9
container_start_page 1425
container_title European journal of inorganic chemistry
container_volume 2016
creator Kirchhoff, Björn
Rau, Sven
Streb, Carsten
description Combining cationic ruthenium photosensitizers (RuPS) with anionic polyoxometalate water oxidation catalysts (POM‐WOCs) is the standard approach for light‐driven POM‐based water oxidation. Here, we show that colloid formation by electrostatic aggregation of a molecular photosensitizer {e.g., [Ru(bpy)3]2+ (bpy = 2,2′‐bipyridine)} and a POM‐WOC {e.g., [Co4(H2O)2(α‐PW9O34)2]10–} significantly affects catalytically relevant system parameters. A facile, quantitative procedure for colloid detection using syringe filtration and UV/Vis spectroscopy is presented, and we illustrate that photosensitizer‐POM colloid formation is a general phenomenon under typical WOC conditions and is observed for a range of photosensitizers and POMs. It is further demonstrated that for some systems an increase in the ionic strength of the solution prevents colloid formation. Significant changes in the electronic interactions between RuPS and POM‐WOC under colloidal and homogeneous conditions are reported, thus highlighting the need for fast and reliable colloid identification. In addition, the study raises awareness about colloid formation in homogeneous solar‐energy conversion schemes driven by two or more ionic species. Electrostatic aggregation of molecular photosensitizers and polyoxometalate water oxidation catalysts into colloids is reported. A facile colloid identification procedure and methods to prevent colloid formation based on the ionic strength of the solvent are illustrated. Significant effects of colloid formation on the electronic interactions between photosensitizer and catalyst were observed.
doi_str_mv 10.1002/ejic.201600065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800495705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800495705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3605-6c9a5923ddd17b9a933a39fd44aa51e7e616e89e3a9f98c2c40cc9e5556361c33</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxejiYhePffoZdiua7cezVDAEMFEw7Gp3RsUx6ptFfCvd4Ax3jy995Lv--XlF0WXBPcIxsk1LI3uJZhwjDFnR1GHYCFizPPkuN1TmsZEpPlpdOb9skUoprwTrfsQQAfTzJFqSjR18AnN_gwLQHfWrVQwtkG2QtOFDdZD400wX-DiQgVVb31Aha1ra0qPTIOGdmXn0ID98Ghs5osQ951pI9FMBXBosjHlPvA8OqlU7eHiZ3aj57vbp2IYjyeDUXEzjjXlmMVcC8VEQsuyJNmLUIJSRUVVpqlSjEAGnHDIBVAlKpHrRKdYawGMMU450ZR2o6tD7puz7x_gg1wZr6Gu1f5HSXKMU8EyzFq0d0C1s947qOSbMyvltpJguWtY7hqWvw23gjgIa1PD9h9a3t6Pir9ufHCND7D5dZV7lTyjGZOzh4F87BeCFtOZpPQbcjqQ1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800495705</pqid></control><display><type>article</type><title>Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kirchhoff, Björn ; Rau, Sven ; Streb, Carsten</creator><creatorcontrib>Kirchhoff, Björn ; Rau, Sven ; Streb, Carsten</creatorcontrib><description>Combining cationic ruthenium photosensitizers (RuPS) with anionic polyoxometalate water oxidation catalysts (POM‐WOCs) is the standard approach for light‐driven POM‐based water oxidation. Here, we show that colloid formation by electrostatic aggregation of a molecular photosensitizer {e.g., [Ru(bpy)3]2+ (bpy = 2,2′‐bipyridine)} and a POM‐WOC {e.g., [Co4(H2O)2(α‐PW9O34)2]10–} significantly affects catalytically relevant system parameters. A facile, quantitative procedure for colloid detection using syringe filtration and UV/Vis spectroscopy is presented, and we illustrate that photosensitizer‐POM colloid formation is a general phenomenon under typical WOC conditions and is observed for a range of photosensitizers and POMs. It is further demonstrated that for some systems an increase in the ionic strength of the solution prevents colloid formation. Significant changes in the electronic interactions between RuPS and POM‐WOC under colloidal and homogeneous conditions are reported, thus highlighting the need for fast and reliable colloid identification. In addition, the study raises awareness about colloid formation in homogeneous solar‐energy conversion schemes driven by two or more ionic species. Electrostatic aggregation of molecular photosensitizers and polyoxometalate water oxidation catalysts into colloids is reported. A facile colloid identification procedure and methods to prevent colloid formation based on the ionic strength of the solvent are illustrated. Significant effects of colloid formation on the electronic interactions between photosensitizer and catalyst were observed.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201600065</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Agglomeration ; Catalysis ; Catalysts ; Colloids ; Electronics ; Formations ; Oxidation ; Photosensitizers ; Polyoxometalates ; Polyoxometallates ; Solvent effects ; Water chemistry</subject><ispartof>European journal of inorganic chemistry, 2016-03, Vol.2016 (9), p.1425-1429</ispartof><rights>Copyright © 2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3605-6c9a5923ddd17b9a933a39fd44aa51e7e616e89e3a9f98c2c40cc9e5556361c33</citedby><cites>FETCH-LOGICAL-c3605-6c9a5923ddd17b9a933a39fd44aa51e7e616e89e3a9f98c2c40cc9e5556361c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201600065$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201600065$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Kirchhoff, Björn</creatorcontrib><creatorcontrib>Rau, Sven</creatorcontrib><creatorcontrib>Streb, Carsten</creatorcontrib><title>Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation</title><title>European journal of inorganic chemistry</title><addtitle>Eur. J. Inorg. Chem</addtitle><description>Combining cationic ruthenium photosensitizers (RuPS) with anionic polyoxometalate water oxidation catalysts (POM‐WOCs) is the standard approach for light‐driven POM‐based water oxidation. Here, we show that colloid formation by electrostatic aggregation of a molecular photosensitizer {e.g., [Ru(bpy)3]2+ (bpy = 2,2′‐bipyridine)} and a POM‐WOC {e.g., [Co4(H2O)2(α‐PW9O34)2]10–} significantly affects catalytically relevant system parameters. A facile, quantitative procedure for colloid detection using syringe filtration and UV/Vis spectroscopy is presented, and we illustrate that photosensitizer‐POM colloid formation is a general phenomenon under typical WOC conditions and is observed for a range of photosensitizers and POMs. It is further demonstrated that for some systems an increase in the ionic strength of the solution prevents colloid formation. Significant changes in the electronic interactions between RuPS and POM‐WOC under colloidal and homogeneous conditions are reported, thus highlighting the need for fast and reliable colloid identification. In addition, the study raises awareness about colloid formation in homogeneous solar‐energy conversion schemes driven by two or more ionic species. Electrostatic aggregation of molecular photosensitizers and polyoxometalate water oxidation catalysts into colloids is reported. A facile colloid identification procedure and methods to prevent colloid formation based on the ionic strength of the solvent are illustrated. Significant effects of colloid formation on the electronic interactions between photosensitizer and catalyst were observed.</description><subject>Agglomeration</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Colloids</subject><subject>Electronics</subject><subject>Formations</subject><subject>Oxidation</subject><subject>Photosensitizers</subject><subject>Polyoxometalates</subject><subject>Polyoxometallates</subject><subject>Solvent effects</subject><subject>Water chemistry</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUhxejiYhePffoZdiua7cezVDAEMFEw7Gp3RsUx6ptFfCvd4Ax3jy995Lv--XlF0WXBPcIxsk1LI3uJZhwjDFnR1GHYCFizPPkuN1TmsZEpPlpdOb9skUoprwTrfsQQAfTzJFqSjR18AnN_gwLQHfWrVQwtkG2QtOFDdZD400wX-DiQgVVb31Aha1ra0qPTIOGdmXn0ID98Ghs5osQ951pI9FMBXBosjHlPvA8OqlU7eHiZ3aj57vbp2IYjyeDUXEzjjXlmMVcC8VEQsuyJNmLUIJSRUVVpqlSjEAGnHDIBVAlKpHrRKdYawGMMU450ZR2o6tD7puz7x_gg1wZr6Gu1f5HSXKMU8EyzFq0d0C1s947qOSbMyvltpJguWtY7hqWvw23gjgIa1PD9h9a3t6Pir9ufHCND7D5dZV7lTyjGZOzh4F87BeCFtOZpPQbcjqQ1w</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Kirchhoff, Björn</creator><creator>Rau, Sven</creator><creator>Streb, Carsten</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201603</creationdate><title>Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation</title><author>Kirchhoff, Björn ; Rau, Sven ; Streb, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3605-6c9a5923ddd17b9a933a39fd44aa51e7e616e89e3a9f98c2c40cc9e5556361c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agglomeration</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Colloids</topic><topic>Electronics</topic><topic>Formations</topic><topic>Oxidation</topic><topic>Photosensitizers</topic><topic>Polyoxometalates</topic><topic>Polyoxometallates</topic><topic>Solvent effects</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirchhoff, Björn</creatorcontrib><creatorcontrib>Rau, Sven</creatorcontrib><creatorcontrib>Streb, Carsten</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirchhoff, Björn</au><au>Rau, Sven</au><au>Streb, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation</atitle><jtitle>European journal of inorganic chemistry</jtitle><addtitle>Eur. J. Inorg. Chem</addtitle><date>2016-03</date><risdate>2016</risdate><volume>2016</volume><issue>9</issue><spage>1425</spage><epage>1429</epage><pages>1425-1429</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>Combining cationic ruthenium photosensitizers (RuPS) with anionic polyoxometalate water oxidation catalysts (POM‐WOCs) is the standard approach for light‐driven POM‐based water oxidation. Here, we show that colloid formation by electrostatic aggregation of a molecular photosensitizer {e.g., [Ru(bpy)3]2+ (bpy = 2,2′‐bipyridine)} and a POM‐WOC {e.g., [Co4(H2O)2(α‐PW9O34)2]10–} significantly affects catalytically relevant system parameters. A facile, quantitative procedure for colloid detection using syringe filtration and UV/Vis spectroscopy is presented, and we illustrate that photosensitizer‐POM colloid formation is a general phenomenon under typical WOC conditions and is observed for a range of photosensitizers and POMs. It is further demonstrated that for some systems an increase in the ionic strength of the solution prevents colloid formation. Significant changes in the electronic interactions between RuPS and POM‐WOC under colloidal and homogeneous conditions are reported, thus highlighting the need for fast and reliable colloid identification. In addition, the study raises awareness about colloid formation in homogeneous solar‐energy conversion schemes driven by two or more ionic species. Electrostatic aggregation of molecular photosensitizers and polyoxometalate water oxidation catalysts into colloids is reported. A facile colloid identification procedure and methods to prevent colloid formation based on the ionic strength of the solvent are illustrated. Significant effects of colloid formation on the electronic interactions between photosensitizer and catalyst were observed.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ejic.201600065</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-1948
ispartof European journal of inorganic chemistry, 2016-03, Vol.2016 (9), p.1425-1429
issn 1434-1948
1099-0682
language eng
recordid cdi_proquest_miscellaneous_1800495705
source Wiley Online Library Journals Frontfile Complete
subjects Agglomeration
Catalysis
Catalysts
Colloids
Electronics
Formations
Oxidation
Photosensitizers
Polyoxometalates
Polyoxometallates
Solvent effects
Water chemistry
title Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20and%20Preventing%20the%20Formation%20of%20Photosensitizer-Catalyst%20Colloids%20in%20Homogeneous%20Light-Driven%20Water%20Oxidation&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Kirchhoff,%20Bj%C3%B6rn&rft.date=2016-03&rft.volume=2016&rft.issue=9&rft.spage=1425&rft.epage=1429&rft.pages=1425-1429&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201600065&rft_dat=%3Cproquest_cross%3E1800495705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800495705&rft_id=info:pmid/&rfr_iscdi=true