Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation
Combining cationic ruthenium photosensitizers (RuPS) with anionic polyoxometalate water oxidation catalysts (POM‐WOCs) is the standard approach for light‐driven POM‐based water oxidation. Here, we show that colloid formation by electrostatic aggregation of a molecular photosensitizer {e.g., [Ru(bpy)...
Gespeichert in:
Veröffentlicht in: | European journal of inorganic chemistry 2016-03, Vol.2016 (9), p.1425-1429 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1429 |
---|---|
container_issue | 9 |
container_start_page | 1425 |
container_title | European journal of inorganic chemistry |
container_volume | 2016 |
creator | Kirchhoff, Björn Rau, Sven Streb, Carsten |
description | Combining cationic ruthenium photosensitizers (RuPS) with anionic polyoxometalate water oxidation catalysts (POM‐WOCs) is the standard approach for light‐driven POM‐based water oxidation. Here, we show that colloid formation by electrostatic aggregation of a molecular photosensitizer {e.g., [Ru(bpy)3]2+ (bpy = 2,2′‐bipyridine)} and a POM‐WOC {e.g., [Co4(H2O)2(α‐PW9O34)2]10–} significantly affects catalytically relevant system parameters. A facile, quantitative procedure for colloid detection using syringe filtration and UV/Vis spectroscopy is presented, and we illustrate that photosensitizer‐POM colloid formation is a general phenomenon under typical WOC conditions and is observed for a range of photosensitizers and POMs. It is further demonstrated that for some systems an increase in the ionic strength of the solution prevents colloid formation. Significant changes in the electronic interactions between RuPS and POM‐WOC under colloidal and homogeneous conditions are reported, thus highlighting the need for fast and reliable colloid identification. In addition, the study raises awareness about colloid formation in homogeneous solar‐energy conversion schemes driven by two or more ionic species.
Electrostatic aggregation of molecular photosensitizers and polyoxometalate water oxidation catalysts into colloids is reported. A facile colloid identification procedure and methods to prevent colloid formation based on the ionic strength of the solvent are illustrated. Significant effects of colloid formation on the electronic interactions between photosensitizer and catalyst were observed. |
doi_str_mv | 10.1002/ejic.201600065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800495705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800495705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3605-6c9a5923ddd17b9a933a39fd44aa51e7e616e89e3a9f98c2c40cc9e5556361c33</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxejiYhePffoZdiua7cezVDAEMFEw7Gp3RsUx6ptFfCvd4Ax3jy995Lv--XlF0WXBPcIxsk1LI3uJZhwjDFnR1GHYCFizPPkuN1TmsZEpPlpdOb9skUoprwTrfsQQAfTzJFqSjR18AnN_gwLQHfWrVQwtkG2QtOFDdZD400wX-DiQgVVb31Aha1ra0qPTIOGdmXn0ID98Ghs5osQ951pI9FMBXBosjHlPvA8OqlU7eHiZ3aj57vbp2IYjyeDUXEzjjXlmMVcC8VEQsuyJNmLUIJSRUVVpqlSjEAGnHDIBVAlKpHrRKdYawGMMU450ZR2o6tD7puz7x_gg1wZr6Gu1f5HSXKMU8EyzFq0d0C1s947qOSbMyvltpJguWtY7hqWvw23gjgIa1PD9h9a3t6Pir9ufHCND7D5dZV7lTyjGZOzh4F87BeCFtOZpPQbcjqQ1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800495705</pqid></control><display><type>article</type><title>Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kirchhoff, Björn ; Rau, Sven ; Streb, Carsten</creator><creatorcontrib>Kirchhoff, Björn ; Rau, Sven ; Streb, Carsten</creatorcontrib><description>Combining cationic ruthenium photosensitizers (RuPS) with anionic polyoxometalate water oxidation catalysts (POM‐WOCs) is the standard approach for light‐driven POM‐based water oxidation. Here, we show that colloid formation by electrostatic aggregation of a molecular photosensitizer {e.g., [Ru(bpy)3]2+ (bpy = 2,2′‐bipyridine)} and a POM‐WOC {e.g., [Co4(H2O)2(α‐PW9O34)2]10–} significantly affects catalytically relevant system parameters. A facile, quantitative procedure for colloid detection using syringe filtration and UV/Vis spectroscopy is presented, and we illustrate that photosensitizer‐POM colloid formation is a general phenomenon under typical WOC conditions and is observed for a range of photosensitizers and POMs. It is further demonstrated that for some systems an increase in the ionic strength of the solution prevents colloid formation. Significant changes in the electronic interactions between RuPS and POM‐WOC under colloidal and homogeneous conditions are reported, thus highlighting the need for fast and reliable colloid identification. In addition, the study raises awareness about colloid formation in homogeneous solar‐energy conversion schemes driven by two or more ionic species.
Electrostatic aggregation of molecular photosensitizers and polyoxometalate water oxidation catalysts into colloids is reported. A facile colloid identification procedure and methods to prevent colloid formation based on the ionic strength of the solvent are illustrated. Significant effects of colloid formation on the electronic interactions between photosensitizer and catalyst were observed.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201600065</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Agglomeration ; Catalysis ; Catalysts ; Colloids ; Electronics ; Formations ; Oxidation ; Photosensitizers ; Polyoxometalates ; Polyoxometallates ; Solvent effects ; Water chemistry</subject><ispartof>European journal of inorganic chemistry, 2016-03, Vol.2016 (9), p.1425-1429</ispartof><rights>Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3605-6c9a5923ddd17b9a933a39fd44aa51e7e616e89e3a9f98c2c40cc9e5556361c33</citedby><cites>FETCH-LOGICAL-c3605-6c9a5923ddd17b9a933a39fd44aa51e7e616e89e3a9f98c2c40cc9e5556361c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejic.201600065$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejic.201600065$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Kirchhoff, Björn</creatorcontrib><creatorcontrib>Rau, Sven</creatorcontrib><creatorcontrib>Streb, Carsten</creatorcontrib><title>Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation</title><title>European journal of inorganic chemistry</title><addtitle>Eur. J. Inorg. Chem</addtitle><description>Combining cationic ruthenium photosensitizers (RuPS) with anionic polyoxometalate water oxidation catalysts (POM‐WOCs) is the standard approach for light‐driven POM‐based water oxidation. Here, we show that colloid formation by electrostatic aggregation of a molecular photosensitizer {e.g., [Ru(bpy)3]2+ (bpy = 2,2′‐bipyridine)} and a POM‐WOC {e.g., [Co4(H2O)2(α‐PW9O34)2]10–} significantly affects catalytically relevant system parameters. A facile, quantitative procedure for colloid detection using syringe filtration and UV/Vis spectroscopy is presented, and we illustrate that photosensitizer‐POM colloid formation is a general phenomenon under typical WOC conditions and is observed for a range of photosensitizers and POMs. It is further demonstrated that for some systems an increase in the ionic strength of the solution prevents colloid formation. Significant changes in the electronic interactions between RuPS and POM‐WOC under colloidal and homogeneous conditions are reported, thus highlighting the need for fast and reliable colloid identification. In addition, the study raises awareness about colloid formation in homogeneous solar‐energy conversion schemes driven by two or more ionic species.
Electrostatic aggregation of molecular photosensitizers and polyoxometalate water oxidation catalysts into colloids is reported. A facile colloid identification procedure and methods to prevent colloid formation based on the ionic strength of the solvent are illustrated. Significant effects of colloid formation on the electronic interactions between photosensitizer and catalyst were observed.</description><subject>Agglomeration</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Colloids</subject><subject>Electronics</subject><subject>Formations</subject><subject>Oxidation</subject><subject>Photosensitizers</subject><subject>Polyoxometalates</subject><subject>Polyoxometallates</subject><subject>Solvent effects</subject><subject>Water chemistry</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUhxejiYhePffoZdiua7cezVDAEMFEw7Gp3RsUx6ptFfCvd4Ax3jy995Lv--XlF0WXBPcIxsk1LI3uJZhwjDFnR1GHYCFizPPkuN1TmsZEpPlpdOb9skUoprwTrfsQQAfTzJFqSjR18AnN_gwLQHfWrVQwtkG2QtOFDdZD400wX-DiQgVVb31Aha1ra0qPTIOGdmXn0ID98Ghs5osQ951pI9FMBXBosjHlPvA8OqlU7eHiZ3aj57vbp2IYjyeDUXEzjjXlmMVcC8VEQsuyJNmLUIJSRUVVpqlSjEAGnHDIBVAlKpHrRKdYawGMMU450ZR2o6tD7puz7x_gg1wZr6Gu1f5HSXKMU8EyzFq0d0C1s947qOSbMyvltpJguWtY7hqWvw23gjgIa1PD9h9a3t6Pir9ufHCND7D5dZV7lTyjGZOzh4F87BeCFtOZpPQbcjqQ1w</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Kirchhoff, Björn</creator><creator>Rau, Sven</creator><creator>Streb, Carsten</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201603</creationdate><title>Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation</title><author>Kirchhoff, Björn ; Rau, Sven ; Streb, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3605-6c9a5923ddd17b9a933a39fd44aa51e7e616e89e3a9f98c2c40cc9e5556361c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agglomeration</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Colloids</topic><topic>Electronics</topic><topic>Formations</topic><topic>Oxidation</topic><topic>Photosensitizers</topic><topic>Polyoxometalates</topic><topic>Polyoxometallates</topic><topic>Solvent effects</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirchhoff, Björn</creatorcontrib><creatorcontrib>Rau, Sven</creatorcontrib><creatorcontrib>Streb, Carsten</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirchhoff, Björn</au><au>Rau, Sven</au><au>Streb, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation</atitle><jtitle>European journal of inorganic chemistry</jtitle><addtitle>Eur. J. Inorg. Chem</addtitle><date>2016-03</date><risdate>2016</risdate><volume>2016</volume><issue>9</issue><spage>1425</spage><epage>1429</epage><pages>1425-1429</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>Combining cationic ruthenium photosensitizers (RuPS) with anionic polyoxometalate water oxidation catalysts (POM‐WOCs) is the standard approach for light‐driven POM‐based water oxidation. Here, we show that colloid formation by electrostatic aggregation of a molecular photosensitizer {e.g., [Ru(bpy)3]2+ (bpy = 2,2′‐bipyridine)} and a POM‐WOC {e.g., [Co4(H2O)2(α‐PW9O34)2]10–} significantly affects catalytically relevant system parameters. A facile, quantitative procedure for colloid detection using syringe filtration and UV/Vis spectroscopy is presented, and we illustrate that photosensitizer‐POM colloid formation is a general phenomenon under typical WOC conditions and is observed for a range of photosensitizers and POMs. It is further demonstrated that for some systems an increase in the ionic strength of the solution prevents colloid formation. Significant changes in the electronic interactions between RuPS and POM‐WOC under colloidal and homogeneous conditions are reported, thus highlighting the need for fast and reliable colloid identification. In addition, the study raises awareness about colloid formation in homogeneous solar‐energy conversion schemes driven by two or more ionic species.
Electrostatic aggregation of molecular photosensitizers and polyoxometalate water oxidation catalysts into colloids is reported. A facile colloid identification procedure and methods to prevent colloid formation based on the ionic strength of the solvent are illustrated. Significant effects of colloid formation on the electronic interactions between photosensitizer and catalyst were observed.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ejic.201600065</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-1948 |
ispartof | European journal of inorganic chemistry, 2016-03, Vol.2016 (9), p.1425-1429 |
issn | 1434-1948 1099-0682 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800495705 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Agglomeration Catalysis Catalysts Colloids Electronics Formations Oxidation Photosensitizers Polyoxometalates Polyoxometallates Solvent effects Water chemistry |
title | Detecting and Preventing the Formation of Photosensitizer-Catalyst Colloids in Homogeneous Light-Driven Water Oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20and%20Preventing%20the%20Formation%20of%20Photosensitizer-Catalyst%20Colloids%20in%20Homogeneous%20Light-Driven%20Water%20Oxidation&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Kirchhoff,%20Bj%C3%B6rn&rft.date=2016-03&rft.volume=2016&rft.issue=9&rft.spage=1425&rft.epage=1429&rft.pages=1425-1429&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201600065&rft_dat=%3Cproquest_cross%3E1800495705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800495705&rft_id=info:pmid/&rfr_iscdi=true |