Using similarity analysis to detect frame duplication forgery in videos
Duplication of selected frames from a video to another location in the same video is one of the most common methods of video forgery. However, few algorithms have been suggested for detecting this tampering operation. This paper proposes an effective similarity-analysis-based method for frame duplic...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2016-02, Vol.75 (4), p.1793-1811 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1811 |
---|---|
container_issue | 4 |
container_start_page | 1793 |
container_title | Multimedia tools and applications |
container_volume | 75 |
creator | Yang, Jianmei Huang, Tianqiang Su, Lichao |
description | Duplication of selected frames from a video to another location in the same video is one of the most common methods of video forgery. However, few algorithms have been suggested for detecting this tampering operation. This paper proposes an effective similarity-analysis-based method for frame duplication detection that is implemented in two stages. In the first stage, the features of each frame are obtained via SVD (Singular Value Decomposition). Next, the Euclidean distance is calculated between features of each frame and the reference frame. After dividing the video sequence into overlapping sub-sequences, the similarities between the sub-sequences are calculated, and then our algorithm identifies those video sequences with high similarity as candidate duplications. In the second stage, the candidate duplications are confirmed through random block matching. The experimental results show that our algorithm provides detection accuracy that is higher than the previous algorithms, and it has an outstanding performance in terms of time efficiency. |
doi_str_mv | 10.1007/s11042-014-2374-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800495392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800495392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e86dc2d8bd1d22ed45e10be34131fe0abefd82d0e40f1eff67b74e276ddceebf3</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoOI5-gLuAGzfVvDRt2qUMOgoDbpx1SJuXIUPbjEkr9O_NMC5EcPXu4twL7xByC-wBGJOPEYAJnjEQGc-lyOQZWUAh80xKDucp5xXLZMHgklzFuGcMyoKLBVlvoxt2NLredTq4caZ60N0cXaSjpwZHbEdqg-6RmunQuVaPzg_U-rDDMFM30C9n0MdrcmF1F_Hm5y7J9uX5Y_Wabd7Xb6unTdYKqMcMq9K03FSNAcM5GlEgsAZzATlYZLpBaypuGApmAa0tZSMFclka0yI2Nl-S-9PuIfjPCeOoehdb7Do9oJ-igooxURd5zRN69wfd-ymk7xIlJXBZ1bVIFJyoNvgYA1p1CK7XYVbA1FGtOqlVSa06qlUydfipExM7JBG_lv8tfQNibX0C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771278994</pqid></control><display><type>article</type><title>Using similarity analysis to detect frame duplication forgery in videos</title><source>SpringerNature Journals</source><creator>Yang, Jianmei ; Huang, Tianqiang ; Su, Lichao</creator><creatorcontrib>Yang, Jianmei ; Huang, Tianqiang ; Su, Lichao</creatorcontrib><description>Duplication of selected frames from a video to another location in the same video is one of the most common methods of video forgery. However, few algorithms have been suggested for detecting this tampering operation. This paper proposes an effective similarity-analysis-based method for frame duplication detection that is implemented in two stages. In the first stage, the features of each frame are obtained via SVD (Singular Value Decomposition). Next, the Euclidean distance is calculated between features of each frame and the reference frame. After dividing the video sequence into overlapping sub-sequences, the similarities between the sub-sequences are calculated, and then our algorithm identifies those video sequences with high similarity as candidate duplications. In the second stage, the candidate duplications are confirmed through random block matching. The experimental results show that our algorithm provides detection accuracy that is higher than the previous algorithms, and it has an outstanding performance in terms of time efficiency.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-014-2374-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Analysis ; Blocking ; Computer Communication Networks ; Computer forensics ; Computer Science ; Data Structures and Information Theory ; Digital signatures ; Digital video ; Efficiency ; Forensic sciences ; Forgery ; Frames ; Localization ; Mathematical analysis ; Multimedia ; Multimedia computer applications ; Multimedia Information Systems ; Reproduction ; Similarity ; Singular value decomposition ; Special Purpose and Application-Based Systems ; Studies ; Surveillance ; Video compression</subject><ispartof>Multimedia tools and applications, 2016-02, Vol.75 (4), p.1793-1811</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e86dc2d8bd1d22ed45e10be34131fe0abefd82d0e40f1eff67b74e276ddceebf3</citedby><cites>FETCH-LOGICAL-c419t-e86dc2d8bd1d22ed45e10be34131fe0abefd82d0e40f1eff67b74e276ddceebf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-014-2374-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-014-2374-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Yang, Jianmei</creatorcontrib><creatorcontrib>Huang, Tianqiang</creatorcontrib><creatorcontrib>Su, Lichao</creatorcontrib><title>Using similarity analysis to detect frame duplication forgery in videos</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Duplication of selected frames from a video to another location in the same video is one of the most common methods of video forgery. However, few algorithms have been suggested for detecting this tampering operation. This paper proposes an effective similarity-analysis-based method for frame duplication detection that is implemented in two stages. In the first stage, the features of each frame are obtained via SVD (Singular Value Decomposition). Next, the Euclidean distance is calculated between features of each frame and the reference frame. After dividing the video sequence into overlapping sub-sequences, the similarities between the sub-sequences are calculated, and then our algorithm identifies those video sequences with high similarity as candidate duplications. In the second stage, the candidate duplications are confirmed through random block matching. The experimental results show that our algorithm provides detection accuracy that is higher than the previous algorithms, and it has an outstanding performance in terms of time efficiency.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Blocking</subject><subject>Computer Communication Networks</subject><subject>Computer forensics</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Digital signatures</subject><subject>Digital video</subject><subject>Efficiency</subject><subject>Forensic sciences</subject><subject>Forgery</subject><subject>Frames</subject><subject>Localization</subject><subject>Mathematical analysis</subject><subject>Multimedia</subject><subject>Multimedia computer applications</subject><subject>Multimedia Information Systems</subject><subject>Reproduction</subject><subject>Similarity</subject><subject>Singular value decomposition</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Studies</subject><subject>Surveillance</subject><subject>Video compression</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFKxDAURYMoOI5-gLuAGzfVvDRt2qUMOgoDbpx1SJuXIUPbjEkr9O_NMC5EcPXu4twL7xByC-wBGJOPEYAJnjEQGc-lyOQZWUAh80xKDucp5xXLZMHgklzFuGcMyoKLBVlvoxt2NLredTq4caZ60N0cXaSjpwZHbEdqg-6RmunQuVaPzg_U-rDDMFM30C9n0MdrcmF1F_Hm5y7J9uX5Y_Wabd7Xb6unTdYKqMcMq9K03FSNAcM5GlEgsAZzATlYZLpBaypuGApmAa0tZSMFclka0yI2Nl-S-9PuIfjPCeOoehdb7Do9oJ-igooxURd5zRN69wfd-ymk7xIlJXBZ1bVIFJyoNvgYA1p1CK7XYVbA1FGtOqlVSa06qlUydfipExM7JBG_lv8tfQNibX0C</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Yang, Jianmei</creator><creator>Huang, Tianqiang</creator><creator>Su, Lichao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160201</creationdate><title>Using similarity analysis to detect frame duplication forgery in videos</title><author>Yang, Jianmei ; Huang, Tianqiang ; Su, Lichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e86dc2d8bd1d22ed45e10be34131fe0abefd82d0e40f1eff67b74e276ddceebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Blocking</topic><topic>Computer Communication Networks</topic><topic>Computer forensics</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Digital signatures</topic><topic>Digital video</topic><topic>Efficiency</topic><topic>Forensic sciences</topic><topic>Forgery</topic><topic>Frames</topic><topic>Localization</topic><topic>Mathematical analysis</topic><topic>Multimedia</topic><topic>Multimedia computer applications</topic><topic>Multimedia Information Systems</topic><topic>Reproduction</topic><topic>Similarity</topic><topic>Singular value decomposition</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Studies</topic><topic>Surveillance</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jianmei</creatorcontrib><creatorcontrib>Huang, Tianqiang</creatorcontrib><creatorcontrib>Su, Lichao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jianmei</au><au>Huang, Tianqiang</au><au>Su, Lichao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using similarity analysis to detect frame duplication forgery in videos</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>75</volume><issue>4</issue><spage>1793</spage><epage>1811</epage><pages>1793-1811</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Duplication of selected frames from a video to another location in the same video is one of the most common methods of video forgery. However, few algorithms have been suggested for detecting this tampering operation. This paper proposes an effective similarity-analysis-based method for frame duplication detection that is implemented in two stages. In the first stage, the features of each frame are obtained via SVD (Singular Value Decomposition). Next, the Euclidean distance is calculated between features of each frame and the reference frame. After dividing the video sequence into overlapping sub-sequences, the similarities between the sub-sequences are calculated, and then our algorithm identifies those video sequences with high similarity as candidate duplications. In the second stage, the candidate duplications are confirmed through random block matching. The experimental results show that our algorithm provides detection accuracy that is higher than the previous algorithms, and it has an outstanding performance in terms of time efficiency.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-014-2374-7</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2016-02, Vol.75 (4), p.1793-1811 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800495392 |
source | SpringerNature Journals |
subjects | Accuracy Algorithms Analysis Blocking Computer Communication Networks Computer forensics Computer Science Data Structures and Information Theory Digital signatures Digital video Efficiency Forensic sciences Forgery Frames Localization Mathematical analysis Multimedia Multimedia computer applications Multimedia Information Systems Reproduction Similarity Singular value decomposition Special Purpose and Application-Based Systems Studies Surveillance Video compression |
title | Using similarity analysis to detect frame duplication forgery in videos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20similarity%20analysis%20to%20detect%20frame%20duplication%20forgery%20in%20videos&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Yang,%20Jianmei&rft.date=2016-02-01&rft.volume=75&rft.issue=4&rft.spage=1793&rft.epage=1811&rft.pages=1793-1811&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-014-2374-7&rft_dat=%3Cproquest_cross%3E1800495392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771278994&rft_id=info:pmid/&rfr_iscdi=true |