Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

We reexamine the relationship between pyroxene composition and near‐infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two‐part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteoritics & planetary science 2016-02, Vol.51 (2), p.207-234
Hauptverfasser: Moriarty III, D. P., Pieters, C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 2
container_start_page 207
container_title Meteoritics & planetary science
container_volume 51
creator Moriarty III, D. P.
Pieters, C. M.
description We reexamine the relationship between pyroxene composition and near‐infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two‐part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene‐bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene‐bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene‐bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low‐Ca pyroxene‐bearing materials, and (4) feldspathic materials.
doi_str_mv 10.1111/maps.12588
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800495081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3945713271</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5298-789ae8d42b3e1bb522be180a6d94093aae3e581f0cf8d2dbfb2cb32f861ac3eb3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEEqVw4QkscUGIFDuOE4fbalm2QBeQCuJo2ckEXBI79Xhh95l4SRwCPXCoL_bM__2_R5ose8zoGUvnxagnPGOFkPJOdsKaUuSCUXo3vams8obXzf3sAeIVpVwwXp5kv9Z-nAY42GgBiXVkOgZ_AAekTYLH1PcOSQfB_oCO9MGPRBv0YZoFYrTrSAsuQsCXZHPQcxgu2Gryw-AJLr3n5HzziowQwQcb5xqPLn6DaFsy7QPcfJyUOTTA6CMQBIfWfSWdjvphdq_XA8Kjv_dp9vn15tP6PL_4sH2zXl3kWhSNzGvZaJBdWRgOzBhRFAaYpLrqmpI2XGvgICTradvLruhMb4rW8KKXFdMtB8NPs6dL7hT89R4wqtFiC8OgHfg9qhRGy0ZQyRL65D_0yu-DS9OpgnNaCybK-jaK1VWaWdbVnPVsodrgEQP0agp21OGoGFXzdtW8XfVnuwlmC_zTDnC8hVS71cfLf5588ViMcLjx6PBdVTWvhfryfqt4tS3e7t7t1CX_DfoVul0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762988761</pqid></control><display><type>article</type><title>Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Moriarty III, D. P. ; Pieters, C. M.</creator><creatorcontrib>Moriarty III, D. P. ; Pieters, C. M.</creatorcontrib><description>We reexamine the relationship between pyroxene composition and near‐infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two‐part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene‐bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene‐bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene‐bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low‐Ca pyroxene‐bearing materials, and (4) feldspathic materials.</description><identifier>ISSN: 1086-9379</identifier><identifier>EISSN: 1945-5100</identifier><identifier>DOI: 10.1111/maps.12588</identifier><identifier>CODEN: MPSCFY</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Absorption ; Absorption bands ; Absorption spectra ; Algorithms ; Basalt ; Basins ; Bearing materials ; Bearings ; Complexity ; Composition ; Gaussian ; Infrared absorption ; Lunar soil ; Meteorites ; Meteors &amp; meteorites ; Pyroxenes ; Remote sensing ; Weathering</subject><ispartof>Meteoritics &amp; planetary science, 2016-02, Vol.51 (2), p.207-234</ispartof><rights>The Meteoritical Society, 2016.</rights><rights>Copyright © 2016 The Meteoritical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5298-789ae8d42b3e1bb522be180a6d94093aae3e581f0cf8d2dbfb2cb32f861ac3eb3</citedby><cites>FETCH-LOGICAL-a5298-789ae8d42b3e1bb522be180a6d94093aae3e581f0cf8d2dbfb2cb32f861ac3eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmaps.12588$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmaps.12588$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Moriarty III, D. P.</creatorcontrib><creatorcontrib>Pieters, C. M.</creatorcontrib><title>Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data</title><title>Meteoritics &amp; planetary science</title><addtitle>Meteorit Planet Sci</addtitle><description>We reexamine the relationship between pyroxene composition and near‐infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two‐part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene‐bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene‐bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene‐bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low‐Ca pyroxene‐bearing materials, and (4) feldspathic materials.</description><subject>Absorption</subject><subject>Absorption bands</subject><subject>Absorption spectra</subject><subject>Algorithms</subject><subject>Basalt</subject><subject>Basins</subject><subject>Bearing materials</subject><subject>Bearings</subject><subject>Complexity</subject><subject>Composition</subject><subject>Gaussian</subject><subject>Infrared absorption</subject><subject>Lunar soil</subject><subject>Meteorites</subject><subject>Meteors &amp; meteorites</subject><subject>Pyroxenes</subject><subject>Remote sensing</subject><subject>Weathering</subject><issn>1086-9379</issn><issn>1945-5100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhiMEEqVw4QkscUGIFDuOE4fbalm2QBeQCuJo2ckEXBI79Xhh95l4SRwCPXCoL_bM__2_R5ose8zoGUvnxagnPGOFkPJOdsKaUuSCUXo3vams8obXzf3sAeIVpVwwXp5kv9Z-nAY42GgBiXVkOgZ_AAekTYLH1PcOSQfB_oCO9MGPRBv0YZoFYrTrSAsuQsCXZHPQcxgu2Gryw-AJLr3n5HzziowQwQcb5xqPLn6DaFsy7QPcfJyUOTTA6CMQBIfWfSWdjvphdq_XA8Kjv_dp9vn15tP6PL_4sH2zXl3kWhSNzGvZaJBdWRgOzBhRFAaYpLrqmpI2XGvgICTradvLruhMb4rW8KKXFdMtB8NPs6dL7hT89R4wqtFiC8OgHfg9qhRGy0ZQyRL65D_0yu-DS9OpgnNaCybK-jaK1VWaWdbVnPVsodrgEQP0agp21OGoGFXzdtW8XfVnuwlmC_zTDnC8hVS71cfLf5588ViMcLjx6PBdVTWvhfryfqt4tS3e7t7t1CX_DfoVul0</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Moriarty III, D. P.</creator><creator>Pieters, C. M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201602</creationdate><title>Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data</title><author>Moriarty III, D. P. ; Pieters, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5298-789ae8d42b3e1bb522be180a6d94093aae3e581f0cf8d2dbfb2cb32f861ac3eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Absorption</topic><topic>Absorption bands</topic><topic>Absorption spectra</topic><topic>Algorithms</topic><topic>Basalt</topic><topic>Basins</topic><topic>Bearing materials</topic><topic>Bearings</topic><topic>Complexity</topic><topic>Composition</topic><topic>Gaussian</topic><topic>Infrared absorption</topic><topic>Lunar soil</topic><topic>Meteorites</topic><topic>Meteors &amp; meteorites</topic><topic>Pyroxenes</topic><topic>Remote sensing</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moriarty III, D. P.</creatorcontrib><creatorcontrib>Pieters, C. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Meteoritics &amp; planetary science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moriarty III, D. P.</au><au>Pieters, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data</atitle><jtitle>Meteoritics &amp; planetary science</jtitle><addtitle>Meteorit Planet Sci</addtitle><date>2016-02</date><risdate>2016</risdate><volume>51</volume><issue>2</issue><spage>207</spage><epage>234</epage><pages>207-234</pages><issn>1086-9379</issn><eissn>1945-5100</eissn><coden>MPSCFY</coden><abstract>We reexamine the relationship between pyroxene composition and near‐infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two‐part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene‐bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene‐bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene‐bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low‐Ca pyroxene‐bearing materials, and (4) feldspathic materials.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/maps.12588</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1086-9379
ispartof Meteoritics & planetary science, 2016-02, Vol.51 (2), p.207-234
issn 1086-9379
1945-5100
language eng
recordid cdi_proquest_miscellaneous_1800495081
source Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Absorption
Absorption bands
Absorption spectra
Algorithms
Basalt
Basins
Bearing materials
Bearings
Complexity
Composition
Gaussian
Infrared absorption
Lunar soil
Meteorites
Meteors & meteorites
Pyroxenes
Remote sensing
Weathering
title Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexities%20in%20pyroxene%20compositions%20derived%20from%20absorption%20band%20centers:%20Examples%20from%20Apollo%20samples,%20HED%20meteorites,%20synthetic%20pure%20pyroxenes,%20and%20remote%20sensing%20data&rft.jtitle=Meteoritics%20&%20planetary%20science&rft.au=Moriarty%20III,%20D.%20P.&rft.date=2016-02&rft.volume=51&rft.issue=2&rft.spage=207&rft.epage=234&rft.pages=207-234&rft.issn=1086-9379&rft.eissn=1945-5100&rft.coden=MPSCFY&rft_id=info:doi/10.1111/maps.12588&rft_dat=%3Cproquest_cross%3E3945713271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762988761&rft_id=info:pmid/&rfr_iscdi=true