Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple
A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdif...
Gespeichert in:
Veröffentlicht in: | Journal of phase equilibria and diffusion 2016-04, Vol.37 (2), p.201-211 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 2 |
container_start_page | 201 |
container_title | Journal of phase equilibria and diffusion |
container_volume | 37 |
creator | Chyrkin, A. Epishin, A. Pillai, R. Link, T. Nolze, G. Quadakkers, W. J. |
description | A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdiffusion results in dissolution of the γ′-Ni
3
Al in the superalloy and in growth of nickel grains towards CMSX-10. Rapid diffusion of aluminum from the superalloy into pure nickel leads to a significant formation of pores in the superalloy. The interdiffusion processes were modelled using the finite-element simulation software DICTRA with the databases TCNi5 and MobNi2, tailored specially for Ni-base superalloys. The effect of alloying elements on the interdiffusion profiles is discussed in terms of alloy thermodynamics. The calculated element concentration profiles are in good agreement with the EPMA measurements. The interdiffusion modeling correctly predicts the shapes of the concentration profiles, e.g. kinks on the Al and Ti profiles in the vicinity of the original interface in the joint. The calculation predicts with reasonable accuracy the extent and the location of the Kirkendall porosity. |
doi_str_mv | 10.1007/s11669-015-0444-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800494280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3985682611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-dc30ac03b9887ae316b7d1d56ea20c8b89f6f59ae1a3fe4b42d428c0b66d29283</originalsourceid><addsrcrecordid>eNp1kMtKxDAUQIMoOI5-gLuCGzdxbh7NY6fUJ8yooIK7kKbp0KHTjsl04d-boSIiuLp3cc7lchA6JXBBAOQsEiKExkByDJxzrPfQhCjBsGQ83097ziWWwOQhOopxBUC1VGKCLhd95dumW2YP3daHqqnrITZ9lz2H3vkYfcyaLisWL--YwOyxya5_iKIfNq0_Rge1baM_-Z5T9HZ781rc4_nT3UNxNceOC7rFlWNgHbBSKyWtZ0SUsiJVLryl4FSpdC3qXFtPLKs9LzmtOFUOSiEqqqliU3Q-3t2E_mPwcWvWTXS-bW3n-yEaogC4Tg4k9OwPuuqH0KXvDJGSMaVTiESRkXKhjzH42mxCs7bh0xAwu6ZmbGpSU7NranRy6OjExHZLH35d_lf6An9gd44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773389703</pqid></control><display><type>article</type><title>Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple</title><source>Springer Nature - Complete Springer Journals</source><creator>Chyrkin, A. ; Epishin, A. ; Pillai, R. ; Link, T. ; Nolze, G. ; Quadakkers, W. J.</creator><creatorcontrib>Chyrkin, A. ; Epishin, A. ; Pillai, R. ; Link, T. ; Nolze, G. ; Quadakkers, W. J.</creatorcontrib><description>A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdiffusion results in dissolution of the γ′-Ni
3
Al in the superalloy and in growth of nickel grains towards CMSX-10. Rapid diffusion of aluminum from the superalloy into pure nickel leads to a significant formation of pores in the superalloy. The interdiffusion processes were modelled using the finite-element simulation software DICTRA with the databases TCNi5 and MobNi2, tailored specially for Ni-base superalloys. The effect of alloying elements on the interdiffusion profiles is discussed in terms of alloy thermodynamics. The calculated element concentration profiles are in good agreement with the EPMA measurements. The interdiffusion modeling correctly predicts the shapes of the concentration profiles, e.g. kinks on the Al and Ti profiles in the vicinity of the original interface in the joint. The calculation predicts with reasonable accuracy the extent and the location of the Kirkendall porosity.</description><identifier>ISSN: 1547-7037</identifier><identifier>EISSN: 1863-7345</identifier><identifier>EISSN: 1934-7243</identifier><identifier>DOI: 10.1007/s11669-015-0444-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Alloying effects ; Alloying elements ; Alloys ; Aluminum ; Ceramics ; Composites ; Corrosion resistance ; Crystallography and Scattering Methods ; Diffusion ; Directional solidification ; Engineering Thermodynamics ; Glass ; Heat and Mass Transfer ; Heat treatment ; Hot pressing ; Interdiffusion ; Mathematical models ; Metallic Materials ; Modelling ; Natural Materials ; Nickel ; Nickel base alloys ; Oxidation ; Physics ; Physics and Astronomy ; Porosity ; Protective coatings ; Single crystals ; Superalloys ; Thermodynamics</subject><ispartof>Journal of phase equilibria and diffusion, 2016-04, Vol.37 (2), p.201-211</ispartof><rights>ASM International 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-dc30ac03b9887ae316b7d1d56ea20c8b89f6f59ae1a3fe4b42d428c0b66d29283</citedby><cites>FETCH-LOGICAL-c462t-dc30ac03b9887ae316b7d1d56ea20c8b89f6f59ae1a3fe4b42d428c0b66d29283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11669-015-0444-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11669-015-0444-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chyrkin, A.</creatorcontrib><creatorcontrib>Epishin, A.</creatorcontrib><creatorcontrib>Pillai, R.</creatorcontrib><creatorcontrib>Link, T.</creatorcontrib><creatorcontrib>Nolze, G.</creatorcontrib><creatorcontrib>Quadakkers, W. J.</creatorcontrib><title>Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple</title><title>Journal of phase equilibria and diffusion</title><addtitle>J. Phase Equilib. Diffus</addtitle><description>A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdiffusion results in dissolution of the γ′-Ni
3
Al in the superalloy and in growth of nickel grains towards CMSX-10. Rapid diffusion of aluminum from the superalloy into pure nickel leads to a significant formation of pores in the superalloy. The interdiffusion processes were modelled using the finite-element simulation software DICTRA with the databases TCNi5 and MobNi2, tailored specially for Ni-base superalloys. The effect of alloying elements on the interdiffusion profiles is discussed in terms of alloy thermodynamics. The calculated element concentration profiles are in good agreement with the EPMA measurements. The interdiffusion modeling correctly predicts the shapes of the concentration profiles, e.g. kinks on the Al and Ti profiles in the vicinity of the original interface in the joint. The calculation predicts with reasonable accuracy the extent and the location of the Kirkendall porosity.</description><subject>Accuracy</subject><subject>Alloying effects</subject><subject>Alloying elements</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Ceramics</subject><subject>Composites</subject><subject>Corrosion resistance</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffusion</subject><subject>Directional solidification</subject><subject>Engineering Thermodynamics</subject><subject>Glass</subject><subject>Heat and Mass Transfer</subject><subject>Heat treatment</subject><subject>Hot pressing</subject><subject>Interdiffusion</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Modelling</subject><subject>Natural Materials</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Porosity</subject><subject>Protective coatings</subject><subject>Single crystals</subject><subject>Superalloys</subject><subject>Thermodynamics</subject><issn>1547-7037</issn><issn>1863-7345</issn><issn>1934-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKxDAUQIMoOI5-gLuCGzdxbh7NY6fUJ8yooIK7kKbp0KHTjsl04d-boSIiuLp3cc7lchA6JXBBAOQsEiKExkByDJxzrPfQhCjBsGQ83097ziWWwOQhOopxBUC1VGKCLhd95dumW2YP3daHqqnrITZ9lz2H3vkYfcyaLisWL--YwOyxya5_iKIfNq0_Rge1baM_-Z5T9HZ781rc4_nT3UNxNceOC7rFlWNgHbBSKyWtZ0SUsiJVLryl4FSpdC3qXFtPLKs9LzmtOFUOSiEqqqliU3Q-3t2E_mPwcWvWTXS-bW3n-yEaogC4Tg4k9OwPuuqH0KXvDJGSMaVTiESRkXKhjzH42mxCs7bh0xAwu6ZmbGpSU7NranRy6OjExHZLH35d_lf6An9gd44</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Chyrkin, A.</creator><creator>Epishin, A.</creator><creator>Pillai, R.</creator><creator>Link, T.</creator><creator>Nolze, G.</creator><creator>Quadakkers, W. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7U5</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20160401</creationdate><title>Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple</title><author>Chyrkin, A. ; Epishin, A. ; Pillai, R. ; Link, T. ; Nolze, G. ; Quadakkers, W. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-dc30ac03b9887ae316b7d1d56ea20c8b89f6f59ae1a3fe4b42d428c0b66d29283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Alloying effects</topic><topic>Alloying elements</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Ceramics</topic><topic>Composites</topic><topic>Corrosion resistance</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffusion</topic><topic>Directional solidification</topic><topic>Engineering Thermodynamics</topic><topic>Glass</topic><topic>Heat and Mass Transfer</topic><topic>Heat treatment</topic><topic>Hot pressing</topic><topic>Interdiffusion</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Modelling</topic><topic>Natural Materials</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Porosity</topic><topic>Protective coatings</topic><topic>Single crystals</topic><topic>Superalloys</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chyrkin, A.</creatorcontrib><creatorcontrib>Epishin, A.</creatorcontrib><creatorcontrib>Pillai, R.</creatorcontrib><creatorcontrib>Link, T.</creatorcontrib><creatorcontrib>Nolze, G.</creatorcontrib><creatorcontrib>Quadakkers, W. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of phase equilibria and diffusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chyrkin, A.</au><au>Epishin, A.</au><au>Pillai, R.</au><au>Link, T.</au><au>Nolze, G.</au><au>Quadakkers, W. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple</atitle><jtitle>Journal of phase equilibria and diffusion</jtitle><stitle>J. Phase Equilib. Diffus</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>37</volume><issue>2</issue><spage>201</spage><epage>211</epage><pages>201-211</pages><issn>1547-7037</issn><eissn>1863-7345</eissn><eissn>1934-7243</eissn><abstract>A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdiffusion results in dissolution of the γ′-Ni
3
Al in the superalloy and in growth of nickel grains towards CMSX-10. Rapid diffusion of aluminum from the superalloy into pure nickel leads to a significant formation of pores in the superalloy. The interdiffusion processes were modelled using the finite-element simulation software DICTRA with the databases TCNi5 and MobNi2, tailored specially for Ni-base superalloys. The effect of alloying elements on the interdiffusion profiles is discussed in terms of alloy thermodynamics. The calculated element concentration profiles are in good agreement with the EPMA measurements. The interdiffusion modeling correctly predicts the shapes of the concentration profiles, e.g. kinks on the Al and Ti profiles in the vicinity of the original interface in the joint. The calculation predicts with reasonable accuracy the extent and the location of the Kirkendall porosity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11669-015-0444-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1547-7037 |
ispartof | Journal of phase equilibria and diffusion, 2016-04, Vol.37 (2), p.201-211 |
issn | 1547-7037 1863-7345 1934-7243 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800494280 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Alloying effects Alloying elements Alloys Aluminum Ceramics Composites Corrosion resistance Crystallography and Scattering Methods Diffusion Directional solidification Engineering Thermodynamics Glass Heat and Mass Transfer Heat treatment Hot pressing Interdiffusion Mathematical models Metallic Materials Modelling Natural Materials Nickel Nickel base alloys Oxidation Physics Physics and Astronomy Porosity Protective coatings Single crystals Superalloys Thermodynamics |
title | Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Interdiffusion%20Processes%20in%20CMSX-10/Ni%20Diffusion%20Couple&rft.jtitle=Journal%20of%20phase%20equilibria%20and%20diffusion&rft.au=Chyrkin,%20A.&rft.date=2016-04-01&rft.volume=37&rft.issue=2&rft.spage=201&rft.epage=211&rft.pages=201-211&rft.issn=1547-7037&rft.eissn=1863-7345&rft_id=info:doi/10.1007/s11669-015-0444-9&rft_dat=%3Cproquest_cross%3E3985682611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773389703&rft_id=info:pmid/&rfr_iscdi=true |