Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple

A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of phase equilibria and diffusion 2016-04, Vol.37 (2), p.201-211
Hauptverfasser: Chyrkin, A., Epishin, A., Pillai, R., Link, T., Nolze, G., Quadakkers, W. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 2
container_start_page 201
container_title Journal of phase equilibria and diffusion
container_volume 37
creator Chyrkin, A.
Epishin, A.
Pillai, R.
Link, T.
Nolze, G.
Quadakkers, W. J.
description A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdiffusion results in dissolution of the γ′-Ni 3 Al in the superalloy and in growth of nickel grains towards CMSX-10. Rapid diffusion of aluminum from the superalloy into pure nickel leads to a significant formation of pores in the superalloy. The interdiffusion processes were modelled using the finite-element simulation software DICTRA with the databases TCNi5 and MobNi2, tailored specially for Ni-base superalloys. The effect of alloying elements on the interdiffusion profiles is discussed in terms of alloy thermodynamics. The calculated element concentration profiles are in good agreement with the EPMA measurements. The interdiffusion modeling correctly predicts the shapes of the concentration profiles, e.g. kinks on the Al and Ti profiles in the vicinity of the original interface in the joint. The calculation predicts with reasonable accuracy the extent and the location of the Kirkendall porosity.
doi_str_mv 10.1007/s11669-015-0444-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800494280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3985682611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-dc30ac03b9887ae316b7d1d56ea20c8b89f6f59ae1a3fe4b42d428c0b66d29283</originalsourceid><addsrcrecordid>eNp1kMtKxDAUQIMoOI5-gLuCGzdxbh7NY6fUJ8yooIK7kKbp0KHTjsl04d-boSIiuLp3cc7lchA6JXBBAOQsEiKExkByDJxzrPfQhCjBsGQ83097ziWWwOQhOopxBUC1VGKCLhd95dumW2YP3daHqqnrITZ9lz2H3vkYfcyaLisWL--YwOyxya5_iKIfNq0_Rge1baM_-Z5T9HZ781rc4_nT3UNxNceOC7rFlWNgHbBSKyWtZ0SUsiJVLryl4FSpdC3qXFtPLKs9LzmtOFUOSiEqqqliU3Q-3t2E_mPwcWvWTXS-bW3n-yEaogC4Tg4k9OwPuuqH0KXvDJGSMaVTiESRkXKhjzH42mxCs7bh0xAwu6ZmbGpSU7NranRy6OjExHZLH35d_lf6An9gd44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773389703</pqid></control><display><type>article</type><title>Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple</title><source>Springer Nature - Complete Springer Journals</source><creator>Chyrkin, A. ; Epishin, A. ; Pillai, R. ; Link, T. ; Nolze, G. ; Quadakkers, W. J.</creator><creatorcontrib>Chyrkin, A. ; Epishin, A. ; Pillai, R. ; Link, T. ; Nolze, G. ; Quadakkers, W. J.</creatorcontrib><description>A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdiffusion results in dissolution of the γ′-Ni 3 Al in the superalloy and in growth of nickel grains towards CMSX-10. Rapid diffusion of aluminum from the superalloy into pure nickel leads to a significant formation of pores in the superalloy. The interdiffusion processes were modelled using the finite-element simulation software DICTRA with the databases TCNi5 and MobNi2, tailored specially for Ni-base superalloys. The effect of alloying elements on the interdiffusion profiles is discussed in terms of alloy thermodynamics. The calculated element concentration profiles are in good agreement with the EPMA measurements. The interdiffusion modeling correctly predicts the shapes of the concentration profiles, e.g. kinks on the Al and Ti profiles in the vicinity of the original interface in the joint. The calculation predicts with reasonable accuracy the extent and the location of the Kirkendall porosity.</description><identifier>ISSN: 1547-7037</identifier><identifier>EISSN: 1863-7345</identifier><identifier>EISSN: 1934-7243</identifier><identifier>DOI: 10.1007/s11669-015-0444-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Alloying effects ; Alloying elements ; Alloys ; Aluminum ; Ceramics ; Composites ; Corrosion resistance ; Crystallography and Scattering Methods ; Diffusion ; Directional solidification ; Engineering Thermodynamics ; Glass ; Heat and Mass Transfer ; Heat treatment ; Hot pressing ; Interdiffusion ; Mathematical models ; Metallic Materials ; Modelling ; Natural Materials ; Nickel ; Nickel base alloys ; Oxidation ; Physics ; Physics and Astronomy ; Porosity ; Protective coatings ; Single crystals ; Superalloys ; Thermodynamics</subject><ispartof>Journal of phase equilibria and diffusion, 2016-04, Vol.37 (2), p.201-211</ispartof><rights>ASM International 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-dc30ac03b9887ae316b7d1d56ea20c8b89f6f59ae1a3fe4b42d428c0b66d29283</citedby><cites>FETCH-LOGICAL-c462t-dc30ac03b9887ae316b7d1d56ea20c8b89f6f59ae1a3fe4b42d428c0b66d29283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11669-015-0444-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11669-015-0444-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chyrkin, A.</creatorcontrib><creatorcontrib>Epishin, A.</creatorcontrib><creatorcontrib>Pillai, R.</creatorcontrib><creatorcontrib>Link, T.</creatorcontrib><creatorcontrib>Nolze, G.</creatorcontrib><creatorcontrib>Quadakkers, W. J.</creatorcontrib><title>Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple</title><title>Journal of phase equilibria and diffusion</title><addtitle>J. Phase Equilib. Diffus</addtitle><description>A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdiffusion results in dissolution of the γ′-Ni 3 Al in the superalloy and in growth of nickel grains towards CMSX-10. Rapid diffusion of aluminum from the superalloy into pure nickel leads to a significant formation of pores in the superalloy. The interdiffusion processes were modelled using the finite-element simulation software DICTRA with the databases TCNi5 and MobNi2, tailored specially for Ni-base superalloys. The effect of alloying elements on the interdiffusion profiles is discussed in terms of alloy thermodynamics. The calculated element concentration profiles are in good agreement with the EPMA measurements. The interdiffusion modeling correctly predicts the shapes of the concentration profiles, e.g. kinks on the Al and Ti profiles in the vicinity of the original interface in the joint. The calculation predicts with reasonable accuracy the extent and the location of the Kirkendall porosity.</description><subject>Accuracy</subject><subject>Alloying effects</subject><subject>Alloying elements</subject><subject>Alloys</subject><subject>Aluminum</subject><subject>Ceramics</subject><subject>Composites</subject><subject>Corrosion resistance</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffusion</subject><subject>Directional solidification</subject><subject>Engineering Thermodynamics</subject><subject>Glass</subject><subject>Heat and Mass Transfer</subject><subject>Heat treatment</subject><subject>Hot pressing</subject><subject>Interdiffusion</subject><subject>Mathematical models</subject><subject>Metallic Materials</subject><subject>Modelling</subject><subject>Natural Materials</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Porosity</subject><subject>Protective coatings</subject><subject>Single crystals</subject><subject>Superalloys</subject><subject>Thermodynamics</subject><issn>1547-7037</issn><issn>1863-7345</issn><issn>1934-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtKxDAUQIMoOI5-gLuCGzdxbh7NY6fUJ8yooIK7kKbp0KHTjsl04d-boSIiuLp3cc7lchA6JXBBAOQsEiKExkByDJxzrPfQhCjBsGQ83097ziWWwOQhOopxBUC1VGKCLhd95dumW2YP3daHqqnrITZ9lz2H3vkYfcyaLisWL--YwOyxya5_iKIfNq0_Rge1baM_-Z5T9HZ781rc4_nT3UNxNceOC7rFlWNgHbBSKyWtZ0SUsiJVLryl4FSpdC3qXFtPLKs9LzmtOFUOSiEqqqliU3Q-3t2E_mPwcWvWTXS-bW3n-yEaogC4Tg4k9OwPuuqH0KXvDJGSMaVTiESRkXKhjzH42mxCs7bh0xAwu6ZmbGpSU7NranRy6OjExHZLH35d_lf6An9gd44</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Chyrkin, A.</creator><creator>Epishin, A.</creator><creator>Pillai, R.</creator><creator>Link, T.</creator><creator>Nolze, G.</creator><creator>Quadakkers, W. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7U5</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20160401</creationdate><title>Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple</title><author>Chyrkin, A. ; Epishin, A. ; Pillai, R. ; Link, T. ; Nolze, G. ; Quadakkers, W. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-dc30ac03b9887ae316b7d1d56ea20c8b89f6f59ae1a3fe4b42d428c0b66d29283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Alloying effects</topic><topic>Alloying elements</topic><topic>Alloys</topic><topic>Aluminum</topic><topic>Ceramics</topic><topic>Composites</topic><topic>Corrosion resistance</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffusion</topic><topic>Directional solidification</topic><topic>Engineering Thermodynamics</topic><topic>Glass</topic><topic>Heat and Mass Transfer</topic><topic>Heat treatment</topic><topic>Hot pressing</topic><topic>Interdiffusion</topic><topic>Mathematical models</topic><topic>Metallic Materials</topic><topic>Modelling</topic><topic>Natural Materials</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Porosity</topic><topic>Protective coatings</topic><topic>Single crystals</topic><topic>Superalloys</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chyrkin, A.</creatorcontrib><creatorcontrib>Epishin, A.</creatorcontrib><creatorcontrib>Pillai, R.</creatorcontrib><creatorcontrib>Link, T.</creatorcontrib><creatorcontrib>Nolze, G.</creatorcontrib><creatorcontrib>Quadakkers, W. J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of phase equilibria and diffusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chyrkin, A.</au><au>Epishin, A.</au><au>Pillai, R.</au><au>Link, T.</au><au>Nolze, G.</au><au>Quadakkers, W. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple</atitle><jtitle>Journal of phase equilibria and diffusion</jtitle><stitle>J. Phase Equilib. Diffus</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>37</volume><issue>2</issue><spage>201</spage><epage>211</epage><pages>201-211</pages><issn>1547-7037</issn><eissn>1863-7345</eissn><eissn>1934-7243</eissn><abstract>A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdiffusion results in dissolution of the γ′-Ni 3 Al in the superalloy and in growth of nickel grains towards CMSX-10. Rapid diffusion of aluminum from the superalloy into pure nickel leads to a significant formation of pores in the superalloy. The interdiffusion processes were modelled using the finite-element simulation software DICTRA with the databases TCNi5 and MobNi2, tailored specially for Ni-base superalloys. The effect of alloying elements on the interdiffusion profiles is discussed in terms of alloy thermodynamics. The calculated element concentration profiles are in good agreement with the EPMA measurements. The interdiffusion modeling correctly predicts the shapes of the concentration profiles, e.g. kinks on the Al and Ti profiles in the vicinity of the original interface in the joint. The calculation predicts with reasonable accuracy the extent and the location of the Kirkendall porosity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11669-015-0444-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1547-7037
ispartof Journal of phase equilibria and diffusion, 2016-04, Vol.37 (2), p.201-211
issn 1547-7037
1863-7345
1934-7243
language eng
recordid cdi_proquest_miscellaneous_1800494280
source Springer Nature - Complete Springer Journals
subjects Accuracy
Alloying effects
Alloying elements
Alloys
Aluminum
Ceramics
Composites
Corrosion resistance
Crystallography and Scattering Methods
Diffusion
Directional solidification
Engineering Thermodynamics
Glass
Heat and Mass Transfer
Heat treatment
Hot pressing
Interdiffusion
Mathematical models
Metallic Materials
Modelling
Natural Materials
Nickel
Nickel base alloys
Oxidation
Physics
Physics and Astronomy
Porosity
Protective coatings
Single crystals
Superalloys
Thermodynamics
title Modeling Interdiffusion Processes in CMSX-10/Ni Diffusion Couple
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Interdiffusion%20Processes%20in%20CMSX-10/Ni%20Diffusion%20Couple&rft.jtitle=Journal%20of%20phase%20equilibria%20and%20diffusion&rft.au=Chyrkin,%20A.&rft.date=2016-04-01&rft.volume=37&rft.issue=2&rft.spage=201&rft.epage=211&rft.pages=201-211&rft.issn=1547-7037&rft.eissn=1863-7345&rft_id=info:doi/10.1007/s11669-015-0444-9&rft_dat=%3Cproquest_cross%3E3985682611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773389703&rft_id=info:pmid/&rfr_iscdi=true