A second-order backward difference time-stepping scheme for penalized Navier-Stokes equations modeling filtration through porous media
We investigate the stability and convergence of a fully implicit, linearly extrapolated second‐order backward difference time‐stepping scheme for the penalized Navier–Stokes equations modeling filtration through porous media. In the penalization approach, an extended Navier–Stokes equation is used i...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2016-03, Vol.32 (2), p.681-705 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 705 |
---|---|
container_issue | 2 |
container_start_page | 681 |
container_title | Numerical methods for partial differential equations |
container_volume | 32 |
creator | Ravindran, S. S. |
description | We investigate the stability and convergence of a fully implicit, linearly extrapolated second‐order backward difference time‐stepping scheme for the penalized Navier–Stokes equations modeling filtration through porous media. In the penalization approach, an extended Navier–Stokes equation is used in the entire computational domain with suitable resistance terms to mimic the presence of porous medium. It is widely used as an alternative to the heterogeneous approach in which different types of partial differential equations (PDEs) are used in fluid and porous subregions along with suitable continuity conditions at the interface. However, the introduction of extra resistance terms makes the penalized Navier–Stokes equations more nonlinear. We prove that the linearly extrapolated scheme is unconditionally stable and derive optimal order error estimates without any stability condition. To show feasibility and applicability of the approach, it is used to numerically solve a passive control problem in which flow around a solid body is controlled by adding porous layers on the surface. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 681–705, 2016 |
doi_str_mv | 10.1002/num.22029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800493812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800493812</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3999-29e18b9b1784c819df2e2fb4c18eff24162ccc902854d02a1f98b3ca44b364e23</originalsourceid><addsrcrecordid>eNpdkc9u1DAQxi0EUpfSQ9_AEhcubv0vG_tYVjQgLYtQW8HNcpxx190kTu2EUh6A5ya7izhw-kaj3zeamQ-hc0YvGKX8sp-6C84p1y_QglGtCJd8-RItaCk1YYX-foJe5_xAKWMF0wv0-wpncLFvSEwNJFxbt3uyqcFN8B4S9A7wGDogeYRhCP09zm4LHWAfEx6gt234BQ3e2B8BErkZ4w4yhsfJjiH2GXexgXbv8qEd06GJx22K0_0WD3HWGYEm2DfolbdthrO_eorurj_crj6S9Zfq0-pqTYLQWhOugala16xU0immG8-B-1o6psB7LtmSO-c05aqQDeWWea1q4ayUtVhK4OIUvTvOHVJ8nCCPpgvZQdvaHuZlDFOUSi0U26Nv_0Mf4pTmg2eqLJRWXAg6U5dH6im08GyGFDqbng2jZh-HmeMwhzjM5u7zoZgd5OgI80t__nPYtDPLUpSF-bapTHXztXpfXa_NSvwBh5yRFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1758982330</pqid></control><display><type>article</type><title>A second-order backward difference time-stepping scheme for penalized Navier-Stokes equations modeling filtration through porous media</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ravindran, S. S.</creator><creatorcontrib>Ravindran, S. S.</creatorcontrib><description>We investigate the stability and convergence of a fully implicit, linearly extrapolated second‐order backward difference time‐stepping scheme for the penalized Navier–Stokes equations modeling filtration through porous media. In the penalization approach, an extended Navier–Stokes equation is used in the entire computational domain with suitable resistance terms to mimic the presence of porous medium. It is widely used as an alternative to the heterogeneous approach in which different types of partial differential equations (PDEs) are used in fluid and porous subregions along with suitable continuity conditions at the interface. However, the introduction of extra resistance terms makes the penalized Navier–Stokes equations more nonlinear. We prove that the linearly extrapolated scheme is unconditionally stable and derive optimal order error estimates without any stability condition. To show feasibility and applicability of the approach, it is used to numerically solve a passive control problem in which flow around a solid body is controlled by adding porous layers on the surface. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 681–705, 2016</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22029</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>error estimates ; Extrapolation ; Filtration ; filtration thorough porous media ; linear extrapolation ; linear extrapolation; mixed finite element ; Mathematical analysis ; Mathematical models ; mixed finite element ; Modelling ; Navier-Stokes equations ; nonhomogeneous boundary condition ; Partial differential equations ; penalty approach ; Porous media ; two-step backward difference</subject><ispartof>Numerical methods for partial differential equations, 2016-03, Vol.32 (2), p.681-705</ispartof><rights>2015 Wiley Periodicals, Inc.</rights><rights>2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22029$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22029$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ravindran, S. S.</creatorcontrib><title>A second-order backward difference time-stepping scheme for penalized Navier-Stokes equations modeling filtration through porous media</title><title>Numerical methods for partial differential equations</title><addtitle>Numer. Methods Partial Differential Eq</addtitle><description>We investigate the stability and convergence of a fully implicit, linearly extrapolated second‐order backward difference time‐stepping scheme for the penalized Navier–Stokes equations modeling filtration through porous media. In the penalization approach, an extended Navier–Stokes equation is used in the entire computational domain with suitable resistance terms to mimic the presence of porous medium. It is widely used as an alternative to the heterogeneous approach in which different types of partial differential equations (PDEs) are used in fluid and porous subregions along with suitable continuity conditions at the interface. However, the introduction of extra resistance terms makes the penalized Navier–Stokes equations more nonlinear. We prove that the linearly extrapolated scheme is unconditionally stable and derive optimal order error estimates without any stability condition. To show feasibility and applicability of the approach, it is used to numerically solve a passive control problem in which flow around a solid body is controlled by adding porous layers on the surface. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 681–705, 2016</description><subject>error estimates</subject><subject>Extrapolation</subject><subject>Filtration</subject><subject>filtration thorough porous media</subject><subject>linear extrapolation</subject><subject>linear extrapolation; mixed finite element</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>mixed finite element</subject><subject>Modelling</subject><subject>Navier-Stokes equations</subject><subject>nonhomogeneous boundary condition</subject><subject>Partial differential equations</subject><subject>penalty approach</subject><subject>Porous media</subject><subject>two-step backward difference</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkc9u1DAQxi0EUpfSQ9_AEhcubv0vG_tYVjQgLYtQW8HNcpxx190kTu2EUh6A5ya7izhw-kaj3zeamQ-hc0YvGKX8sp-6C84p1y_QglGtCJd8-RItaCk1YYX-foJe5_xAKWMF0wv0-wpncLFvSEwNJFxbt3uyqcFN8B4S9A7wGDogeYRhCP09zm4LHWAfEx6gt234BQ3e2B8BErkZ4w4yhsfJjiH2GXexgXbv8qEd06GJx22K0_0WD3HWGYEm2DfolbdthrO_eorurj_crj6S9Zfq0-pqTYLQWhOugala16xU0immG8-B-1o6psB7LtmSO-c05aqQDeWWea1q4ayUtVhK4OIUvTvOHVJ8nCCPpgvZQdvaHuZlDFOUSi0U26Nv_0Mf4pTmg2eqLJRWXAg6U5dH6im08GyGFDqbng2jZh-HmeMwhzjM5u7zoZgd5OgI80t__nPYtDPLUpSF-bapTHXztXpfXa_NSvwBh5yRFQ</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Ravindran, S. S.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201603</creationdate><title>A second-order backward difference time-stepping scheme for penalized Navier-Stokes equations modeling filtration through porous media</title><author>Ravindran, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3999-29e18b9b1784c819df2e2fb4c18eff24162ccc902854d02a1f98b3ca44b364e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>error estimates</topic><topic>Extrapolation</topic><topic>Filtration</topic><topic>filtration thorough porous media</topic><topic>linear extrapolation</topic><topic>linear extrapolation; mixed finite element</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>mixed finite element</topic><topic>Modelling</topic><topic>Navier-Stokes equations</topic><topic>nonhomogeneous boundary condition</topic><topic>Partial differential equations</topic><topic>penalty approach</topic><topic>Porous media</topic><topic>two-step backward difference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravindran, S. S.</creatorcontrib><collection>Istex</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravindran, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second-order backward difference time-stepping scheme for penalized Navier-Stokes equations modeling filtration through porous media</atitle><jtitle>Numerical methods for partial differential equations</jtitle><addtitle>Numer. Methods Partial Differential Eq</addtitle><date>2016-03</date><risdate>2016</risdate><volume>32</volume><issue>2</issue><spage>681</spage><epage>705</epage><pages>681-705</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>We investigate the stability and convergence of a fully implicit, linearly extrapolated second‐order backward difference time‐stepping scheme for the penalized Navier–Stokes equations modeling filtration through porous media. In the penalization approach, an extended Navier–Stokes equation is used in the entire computational domain with suitable resistance terms to mimic the presence of porous medium. It is widely used as an alternative to the heterogeneous approach in which different types of partial differential equations (PDEs) are used in fluid and porous subregions along with suitable continuity conditions at the interface. However, the introduction of extra resistance terms makes the penalized Navier–Stokes equations more nonlinear. We prove that the linearly extrapolated scheme is unconditionally stable and derive optimal order error estimates without any stability condition. To show feasibility and applicability of the approach, it is used to numerically solve a passive control problem in which flow around a solid body is controlled by adding porous layers on the surface. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 681–705, 2016</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/num.22029</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2016-03, Vol.32 (2), p.681-705 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800493812 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | error estimates Extrapolation Filtration filtration thorough porous media linear extrapolation linear extrapolation mixed finite element Mathematical analysis Mathematical models mixed finite element Modelling Navier-Stokes equations nonhomogeneous boundary condition Partial differential equations penalty approach Porous media two-step backward difference |
title | A second-order backward difference time-stepping scheme for penalized Navier-Stokes equations modeling filtration through porous media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second-order%20backward%20difference%20time-stepping%20scheme%20for%20penalized%20Navier-Stokes%20equations%20modeling%20filtration%20through%20porous%20media&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Ravindran,%20S.%20S.&rft.date=2016-03&rft.volume=32&rft.issue=2&rft.spage=681&rft.epage=705&rft.pages=681-705&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22029&rft_dat=%3Cproquest_wiley%3E1800493812%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1758982330&rft_id=info:pmid/&rfr_iscdi=true |