A Puckered Singlet Cyclopentane‐1,3‐diyl: Detection of the Third Isomer in Homolysis
In the photochemical denitrogenation of 1,4‐diaryl‐2,3‐diazabicyclo[2.2.1]heptane (AZ6) bearing sterically hindered substituents, a curious new absorption band at about 450 nm was observed under low‐temperature matrix conditions, together with the previously well‐characterized planar singlet diradic...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2016-02, Vol.22 (7), p.2299-2306 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the photochemical denitrogenation of 1,4‐diaryl‐2,3‐diazabicyclo[2.2.1]heptane (AZ6) bearing sterically hindered substituents, a curious new absorption band at about 450 nm was observed under low‐temperature matrix conditions, together with the previously well‐characterized planar singlet diradical pl‐1DR6 with λmax=≈580 nm. The 450 nm species was electron paramagnetic resonance (EPR)‐silent. Instead of generating the planar diradical pl‐1DR6 and the precursor azoalkane AZ6 upon warming, the ring‐closed bicyclo[2.1.0]pentane derivative SB6, that is, the AZ6 denitrogenation product was identified. Based on product analysis, low‐temperature spectroscopic observations, high‐level quantum‐mechanical computations, viscosity effect, and laser‐flash photolysis, the puckered singlet diradicaloid puc‐1DR6 was assigned to the new 450 nm absorption. The latter was detected experimentally at the same time as the planar singlet diradical pl‐1DR6. Sterically demanding substituents as well as viscosity impediments were essential for the detection of the experimentally hitherto unknown puckered singlet cyclopentane‐1,3‐diyl diradicaloid puc‐1DR6, that is, the third isomer in homolysis. The present findings should stimulate future work on the mechanistically fascinating stereoselectivity documented in the formation of bicyclo[2.1.0]pentanes during the 2,3‐diazabicyclo[2.2.1]heptane denitrogenation.
Translation
Frozen intermediate: The experimentally hitherto unknown puckered singlet cyclopentane‐1,3‐diyl diradicaloid, that is, the third isomer in azoalkane denitrogenation has been observed experimentally for the first time (see figure). Careful selection of appropriate bulky substituents and low‐temperature reaction conditions enabled the direct spectral observation of this elusive intermediate. |
---|---|
ISSN: | 0947-6539 1521-3765 |
DOI: | 10.1002/chem.201503975 |