LQ control based actuator failure compensation
Summary In this paper, LQ control based actuator failure compensation schemes are developed for possibly nonminimum phase overactuated systems with actuator failures. The actuator failure is considered as an unmatched input disturbance signal, and a new disturbance rejection problem is formulated as...
Gespeichert in:
Veröffentlicht in: | Optimal control applications & methods 2016-03, Vol.37 (2), p.227-247 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 247 |
---|---|
container_issue | 2 |
container_start_page | 227 |
container_title | Optimal control applications & methods |
container_volume | 37 |
creator | Wen, L. Y. Tao, G. Yang, H. |
description | Summary
In this paper, LQ control based actuator failure compensation schemes are developed for possibly nonminimum phase overactuated systems with actuator failures. The actuator failure is considered as an unmatched input disturbance signal, and a new disturbance rejection problem is formulated as an LQ control problem using a new cost function to enhance output regulation performance in the presence of actuator failures disturbances. Then the failure compensation design is developed to ensure the maximum reduction of the failure disturbance effect on the system output. New controller structures and design conditions are derived through dynamic programming for compensation of actuator failures, including a finite‐time horizon control design and an infinite‐time horizon control design, and their observer‐based counterparts. Closed‐loop stability and output regulation performance are analyzed in details. Simulation results are presented to verify the desired control system performance in the presence of actuator failures, as compared with a traditional design. Moreover, the new LQ based failure compensation schemes are derived in a parametrized framework suitable for adaptive LQ designs to deal with system parameter and failure uncertainties. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/oca.2162 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800492549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3982673841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4342-18056ef19cb6dbe37ba93c8b91435985a89f5a71e191368cd9eeb0b3268f0e863</originalsourceid><addsrcrecordid>eNp10E1Lw0AQBuBFFKxV8CcEvHhJ3Y_s17FUW4VgFSo9LpvtBFLTbN1N0P57UyqKgqc5zMM7w4vQJcEjgjG98c6OKBH0CA0I1jolnGTHaIBJxlKKlTxFZzGuMcaSMDpAo_w5cb5pg6-TwkZYJda1nW19SEpb1V2Afr3ZQhNtW_nmHJ2Uto5w8TWH6GV6t5jcp_l89jAZ56nLWEZTojAXUBLtCrEqgMnCauZUofsvuFbcKl1yKwkQTZhQbqUBClwwKlSJQQk2RNeH3G3wbx3E1myq6KCubQO-i6Y_gDNNeaZ7evWHrn0Xmv47Q6SknAhN8U-gCz7GAKXZhmpjw84QbPbFmb44sy-up-mBvlc17P51Zj4Z__ZVbOHj29vwaoRkkpvl48xMn26ny8WtMDn7BKRxe30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772516920</pqid></control><display><type>article</type><title>LQ control based actuator failure compensation</title><source>Access via Wiley Online Library</source><creator>Wen, L. Y. ; Tao, G. ; Yang, H.</creator><creatorcontrib>Wen, L. Y. ; Tao, G. ; Yang, H.</creatorcontrib><description>Summary
In this paper, LQ control based actuator failure compensation schemes are developed for possibly nonminimum phase overactuated systems with actuator failures. The actuator failure is considered as an unmatched input disturbance signal, and a new disturbance rejection problem is formulated as an LQ control problem using a new cost function to enhance output regulation performance in the presence of actuator failures disturbances. Then the failure compensation design is developed to ensure the maximum reduction of the failure disturbance effect on the system output. New controller structures and design conditions are derived through dynamic programming for compensation of actuator failures, including a finite‐time horizon control design and an infinite‐time horizon control design, and their observer‐based counterparts. Closed‐loop stability and output regulation performance are analyzed in details. Simulation results are presented to verify the desired control system performance in the presence of actuator failures, as compared with a traditional design. Moreover, the new LQ based failure compensation schemes are derived in a parametrized framework suitable for adaptive LQ designs to deal with system parameter and failure uncertainties. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2162</identifier><identifier>CODEN: OCAMD5</identifier><language>eng</language><publisher>Glasgow: Blackwell Publishing Ltd</publisher><subject>Actuator failure ; Compensation ; Control systems ; Design analysis ; Design engineering ; Disturbances ; dynamic programming ; Failure ; failure compensation ; Horizon ; LQ control ; observer ; state feedback</subject><ispartof>Optimal control applications & methods, 2016-03, Vol.37 (2), p.227-247</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4342-18056ef19cb6dbe37ba93c8b91435985a89f5a71e191368cd9eeb0b3268f0e863</citedby><cites>FETCH-LOGICAL-c4342-18056ef19cb6dbe37ba93c8b91435985a89f5a71e191368cd9eeb0b3268f0e863</cites><orcidid>0000-0002-0688-2994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2162$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2162$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wen, L. Y.</creatorcontrib><creatorcontrib>Tao, G.</creatorcontrib><creatorcontrib>Yang, H.</creatorcontrib><title>LQ control based actuator failure compensation</title><title>Optimal control applications & methods</title><addtitle>Optim. Control Appl. Meth</addtitle><description>Summary
In this paper, LQ control based actuator failure compensation schemes are developed for possibly nonminimum phase overactuated systems with actuator failures. The actuator failure is considered as an unmatched input disturbance signal, and a new disturbance rejection problem is formulated as an LQ control problem using a new cost function to enhance output regulation performance in the presence of actuator failures disturbances. Then the failure compensation design is developed to ensure the maximum reduction of the failure disturbance effect on the system output. New controller structures and design conditions are derived through dynamic programming for compensation of actuator failures, including a finite‐time horizon control design and an infinite‐time horizon control design, and their observer‐based counterparts. Closed‐loop stability and output regulation performance are analyzed in details. Simulation results are presented to verify the desired control system performance in the presence of actuator failures, as compared with a traditional design. Moreover, the new LQ based failure compensation schemes are derived in a parametrized framework suitable for adaptive LQ designs to deal with system parameter and failure uncertainties. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>Actuator failure</subject><subject>Compensation</subject><subject>Control systems</subject><subject>Design analysis</subject><subject>Design engineering</subject><subject>Disturbances</subject><subject>dynamic programming</subject><subject>Failure</subject><subject>failure compensation</subject><subject>Horizon</subject><subject>LQ control</subject><subject>observer</subject><subject>state feedback</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10E1Lw0AQBuBFFKxV8CcEvHhJ3Y_s17FUW4VgFSo9LpvtBFLTbN1N0P57UyqKgqc5zMM7w4vQJcEjgjG98c6OKBH0CA0I1jolnGTHaIBJxlKKlTxFZzGuMcaSMDpAo_w5cb5pg6-TwkZYJda1nW19SEpb1V2Afr3ZQhNtW_nmHJ2Uto5w8TWH6GV6t5jcp_l89jAZ56nLWEZTojAXUBLtCrEqgMnCauZUofsvuFbcKl1yKwkQTZhQbqUBClwwKlSJQQk2RNeH3G3wbx3E1myq6KCubQO-i6Y_gDNNeaZ7evWHrn0Xmv47Q6SknAhN8U-gCz7GAKXZhmpjw84QbPbFmb44sy-up-mBvlc17P51Zj4Z__ZVbOHj29vwaoRkkpvl48xMn26ny8WtMDn7BKRxe30</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Wen, L. Y.</creator><creator>Tao, G.</creator><creator>Yang, H.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0688-2994</orcidid></search><sort><creationdate>201603</creationdate><title>LQ control based actuator failure compensation</title><author>Wen, L. Y. ; Tao, G. ; Yang, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4342-18056ef19cb6dbe37ba93c8b91435985a89f5a71e191368cd9eeb0b3268f0e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Actuator failure</topic><topic>Compensation</topic><topic>Control systems</topic><topic>Design analysis</topic><topic>Design engineering</topic><topic>Disturbances</topic><topic>dynamic programming</topic><topic>Failure</topic><topic>failure compensation</topic><topic>Horizon</topic><topic>LQ control</topic><topic>observer</topic><topic>state feedback</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, L. Y.</creatorcontrib><creatorcontrib>Tao, G.</creatorcontrib><creatorcontrib>Yang, H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications & methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, L. Y.</au><au>Tao, G.</au><au>Yang, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LQ control based actuator failure compensation</atitle><jtitle>Optimal control applications & methods</jtitle><addtitle>Optim. Control Appl. Meth</addtitle><date>2016-03</date><risdate>2016</risdate><volume>37</volume><issue>2</issue><spage>227</spage><epage>247</epage><pages>227-247</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><coden>OCAMD5</coden><abstract>Summary
In this paper, LQ control based actuator failure compensation schemes are developed for possibly nonminimum phase overactuated systems with actuator failures. The actuator failure is considered as an unmatched input disturbance signal, and a new disturbance rejection problem is formulated as an LQ control problem using a new cost function to enhance output regulation performance in the presence of actuator failures disturbances. Then the failure compensation design is developed to ensure the maximum reduction of the failure disturbance effect on the system output. New controller structures and design conditions are derived through dynamic programming for compensation of actuator failures, including a finite‐time horizon control design and an infinite‐time horizon control design, and their observer‐based counterparts. Closed‐loop stability and output regulation performance are analyzed in details. Simulation results are presented to verify the desired control system performance in the presence of actuator failures, as compared with a traditional design. Moreover, the new LQ based failure compensation schemes are derived in a parametrized framework suitable for adaptive LQ designs to deal with system parameter and failure uncertainties. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>Glasgow</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/oca.2162</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-0688-2994</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2087 |
ispartof | Optimal control applications & methods, 2016-03, Vol.37 (2), p.227-247 |
issn | 0143-2087 1099-1514 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800492549 |
source | Access via Wiley Online Library |
subjects | Actuator failure Compensation Control systems Design analysis Design engineering Disturbances dynamic programming Failure failure compensation Horizon LQ control observer state feedback |
title | LQ control based actuator failure compensation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LQ%20control%20based%20actuator%20failure%20compensation&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Wen,%20L.%20Y.&rft.date=2016-03&rft.volume=37&rft.issue=2&rft.spage=227&rft.epage=247&rft.pages=227-247&rft.issn=0143-2087&rft.eissn=1099-1514&rft.coden=OCAMD5&rft_id=info:doi/10.1002/oca.2162&rft_dat=%3Cproquest_cross%3E3982673841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772516920&rft_id=info:pmid/&rfr_iscdi=true |