High-Temperature Oxidation and Decarburization of 14.55 wt pct Cr-Cast Iron in Dry Air Atmosphere
The oxidation and decarburization behavior of 14.55 wt pct Cr-cast iron at 1273 K to 1423 K (1000 °C to 1150 °C) in a dry air atmosphere was studied. A gravimetric investigation showed that intensive oxidation of cast iron takes place at temperatures above 1273 K (1000 °C). It is found that oxidizin...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2016-04, Vol.47 (4), p.1529-1543 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1543 |
---|---|
container_issue | 4 |
container_start_page | 1529 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 47 |
creator | Efremenko, V. G. Chabak, Yu. G. Lekatou, A. Karantzalis, A. E. Efremenko, A. V. |
description | The oxidation and decarburization behavior of 14.55 wt pct Cr-cast iron at 1273 K to 1423 K (1000 °C to 1150 °C) in a dry air atmosphere was studied. A gravimetric investigation showed that intensive oxidation of cast iron takes place at temperatures above 1273 K (1000 °C). It is found that oxidizing heating is accompanied by decarburization, which manifests itself in secondary and eutectic carbide dissolution. The volume fraction of carbides decreases with temperature and holding duration increasing. Decarburization results in the formation of a decarburized layer up to 4 mm in depth. A carbide-free layer in depth up to 100 μm appears in the free surface after 6 to 8 hours holding at 1373 K to 1423 K (1100 °C to 1150 °C). Preliminary activation energy calculations suggested that the eutectic carbide dissolution at the depths of 50 to 400 μm is controlled by carbon diffusion in austenite. The dissolution of eutectic carbides involves a capillarity-induced mechanism, which consists of formation and growth of capillary cavities inside carbides. |
doi_str_mv | 10.1007/s11661-016-3336-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800492006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3974625711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-9c54cbab48b559d6911397f45bd7484f6bf97653b8bbb24e01e2c78d499051c93</originalsourceid><addsrcrecordid>eNp1kMlKxTAUhosoOD6Au4AbN9FzmqlZXq4jCG50HZI01cq9bU1aHJ7GZ_HJjNSFCK7O9P0_h78oDhFOEECdJkQpkQJKyhiTVG0UOyg4o6g5bOYeFKNClmy72E3pCQBQM7lT-Kv24ZHehfUQoh2nGMjta1vbse07YruanAVvo5ti-z7v-oYgPxHi8-Nl_PwY_EiWkS5tGsl1zOe2I2fxjSzaSBbjuk_DY4hhv9hq7CqFg5-6V9xfnN8tr-jN7eX1cnFDvRB6pNoL7p11vHJ5rqVGZFo1XLha8Yo30jVaScFc5ZwreQAMpVdVzbUGgV6zveJ49h1i_zyFNJp1m3xYrWwX-ikZrAC4LgFkRo_-oE_9FLv8nUGlkEPJkGcKZ8rHPqUYGjPEdm3jm0Ew37GbOXaTYzffsRuVNeWsSZntHkL85fyv6AtCNYR3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771402314</pqid></control><display><type>article</type><title>High-Temperature Oxidation and Decarburization of 14.55 wt pct Cr-Cast Iron in Dry Air Atmosphere</title><source>SpringerLink Journals</source><creator>Efremenko, V. G. ; Chabak, Yu. G. ; Lekatou, A. ; Karantzalis, A. E. ; Efremenko, A. V.</creator><creatorcontrib>Efremenko, V. G. ; Chabak, Yu. G. ; Lekatou, A. ; Karantzalis, A. E. ; Efremenko, A. V.</creatorcontrib><description>The oxidation and decarburization behavior of 14.55 wt pct Cr-cast iron at 1273 K to 1423 K (1000 °C to 1150 °C) in a dry air atmosphere was studied. A gravimetric investigation showed that intensive oxidation of cast iron takes place at temperatures above 1273 K (1000 °C). It is found that oxidizing heating is accompanied by decarburization, which manifests itself in secondary and eutectic carbide dissolution. The volume fraction of carbides decreases with temperature and holding duration increasing. Decarburization results in the formation of a decarburized layer up to 4 mm in depth. A carbide-free layer in depth up to 100 μm appears in the free surface after 6 to 8 hours holding at 1373 K to 1423 K (1100 °C to 1150 °C). Preliminary activation energy calculations suggested that the eutectic carbide dissolution at the depths of 50 to 400 μm is controlled by carbon diffusion in austenite. The dissolution of eutectic carbides involves a capillarity-induced mechanism, which consists of formation and growth of capillary cavities inside carbides.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-016-3336-7</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Atmosphere ; Carbides ; Carbon ; Cast iron ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium ; Decarburization ; Dissolution ; Drying ; Eutectic temperature ; Iron ; Materials Science ; Metallic Materials ; Metallurgy ; Nanotechnology ; Oxidation ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2016-04, Vol.47 (4), p.1529-1543</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-9c54cbab48b559d6911397f45bd7484f6bf97653b8bbb24e01e2c78d499051c93</citedby><cites>FETCH-LOGICAL-c559t-9c54cbab48b559d6911397f45bd7484f6bf97653b8bbb24e01e2c78d499051c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-016-3336-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-016-3336-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Efremenko, V. G.</creatorcontrib><creatorcontrib>Chabak, Yu. G.</creatorcontrib><creatorcontrib>Lekatou, A.</creatorcontrib><creatorcontrib>Karantzalis, A. E.</creatorcontrib><creatorcontrib>Efremenko, A. V.</creatorcontrib><title>High-Temperature Oxidation and Decarburization of 14.55 wt pct Cr-Cast Iron in Dry Air Atmosphere</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The oxidation and decarburization behavior of 14.55 wt pct Cr-cast iron at 1273 K to 1423 K (1000 °C to 1150 °C) in a dry air atmosphere was studied. A gravimetric investigation showed that intensive oxidation of cast iron takes place at temperatures above 1273 K (1000 °C). It is found that oxidizing heating is accompanied by decarburization, which manifests itself in secondary and eutectic carbide dissolution. The volume fraction of carbides decreases with temperature and holding duration increasing. Decarburization results in the formation of a decarburized layer up to 4 mm in depth. A carbide-free layer in depth up to 100 μm appears in the free surface after 6 to 8 hours holding at 1373 K to 1423 K (1100 °C to 1150 °C). Preliminary activation energy calculations suggested that the eutectic carbide dissolution at the depths of 50 to 400 μm is controlled by carbon diffusion in austenite. The dissolution of eutectic carbides involves a capillarity-induced mechanism, which consists of formation and growth of capillary cavities inside carbides.</description><subject>Atmosphere</subject><subject>Carbides</subject><subject>Carbon</subject><subject>Cast iron</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Decarburization</subject><subject>Dissolution</subject><subject>Drying</subject><subject>Eutectic temperature</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMlKxTAUhosoOD6Au4AbN9FzmqlZXq4jCG50HZI01cq9bU1aHJ7GZ_HJjNSFCK7O9P0_h78oDhFOEECdJkQpkQJKyhiTVG0UOyg4o6g5bOYeFKNClmy72E3pCQBQM7lT-Kv24ZHehfUQoh2nGMjta1vbse07YruanAVvo5ti-z7v-oYgPxHi8-Nl_PwY_EiWkS5tGsl1zOe2I2fxjSzaSBbjuk_DY4hhv9hq7CqFg5-6V9xfnN8tr-jN7eX1cnFDvRB6pNoL7p11vHJ5rqVGZFo1XLha8Yo30jVaScFc5ZwreQAMpVdVzbUGgV6zveJ49h1i_zyFNJp1m3xYrWwX-ikZrAC4LgFkRo_-oE_9FLv8nUGlkEPJkGcKZ8rHPqUYGjPEdm3jm0Ew37GbOXaTYzffsRuVNeWsSZntHkL85fyv6AtCNYR3</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Efremenko, V. G.</creator><creator>Chabak, Yu. G.</creator><creator>Lekatou, A.</creator><creator>Karantzalis, A. E.</creator><creator>Efremenko, A. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20160401</creationdate><title>High-Temperature Oxidation and Decarburization of 14.55 wt pct Cr-Cast Iron in Dry Air Atmosphere</title><author>Efremenko, V. G. ; Chabak, Yu. G. ; Lekatou, A. ; Karantzalis, A. E. ; Efremenko, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-9c54cbab48b559d6911397f45bd7484f6bf97653b8bbb24e01e2c78d499051c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmosphere</topic><topic>Carbides</topic><topic>Carbon</topic><topic>Cast iron</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Decarburization</topic><topic>Dissolution</topic><topic>Drying</topic><topic>Eutectic temperature</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efremenko, V. G.</creatorcontrib><creatorcontrib>Chabak, Yu. G.</creatorcontrib><creatorcontrib>Lekatou, A.</creatorcontrib><creatorcontrib>Karantzalis, A. E.</creatorcontrib><creatorcontrib>Efremenko, A. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efremenko, V. G.</au><au>Chabak, Yu. G.</au><au>Lekatou, A.</au><au>Karantzalis, A. E.</au><au>Efremenko, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Temperature Oxidation and Decarburization of 14.55 wt pct Cr-Cast Iron in Dry Air Atmosphere</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>47</volume><issue>4</issue><spage>1529</spage><epage>1543</epage><pages>1529-1543</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The oxidation and decarburization behavior of 14.55 wt pct Cr-cast iron at 1273 K to 1423 K (1000 °C to 1150 °C) in a dry air atmosphere was studied. A gravimetric investigation showed that intensive oxidation of cast iron takes place at temperatures above 1273 K (1000 °C). It is found that oxidizing heating is accompanied by decarburization, which manifests itself in secondary and eutectic carbide dissolution. The volume fraction of carbides decreases with temperature and holding duration increasing. Decarburization results in the formation of a decarburized layer up to 4 mm in depth. A carbide-free layer in depth up to 100 μm appears in the free surface after 6 to 8 hours holding at 1373 K to 1423 K (1100 °C to 1150 °C). Preliminary activation energy calculations suggested that the eutectic carbide dissolution at the depths of 50 to 400 μm is controlled by carbon diffusion in austenite. The dissolution of eutectic carbides involves a capillarity-induced mechanism, which consists of formation and growth of capillary cavities inside carbides.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-016-3336-7</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2016-04, Vol.47 (4), p.1529-1543 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800492006 |
source | SpringerLink Journals |
subjects | Atmosphere Carbides Carbon Cast iron Characterization and Evaluation of Materials Chemistry and Materials Science Chromium Decarburization Dissolution Drying Eutectic temperature Iron Materials Science Metallic Materials Metallurgy Nanotechnology Oxidation Structural Materials Surfaces and Interfaces Thin Films |
title | High-Temperature Oxidation and Decarburization of 14.55 wt pct Cr-Cast Iron in Dry Air Atmosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Temperature%20Oxidation%20and%20Decarburization%20of%2014.55%C2%A0wt%C2%A0pct%20Cr-Cast%20Iron%20in%20Dry%20Air%20Atmosphere&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Efremenko,%20V.%20G.&rft.date=2016-04-01&rft.volume=47&rft.issue=4&rft.spage=1529&rft.epage=1543&rft.pages=1529-1543&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-016-3336-7&rft_dat=%3Cproquest_cross%3E3974625711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771402314&rft_id=info:pmid/&rfr_iscdi=true |