A Mathematical Model of Protectant and Curative Fungicide Application and its stability analysis
In this paper we introduce a mathematical model for fungicide application with effect of protectant and curatives factor. We show the value of the Basic Reproduction Number (R0) of the fungal disease, which is computed from the largest eigen value of the next generation matrix of the model. The resu...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2016-01, Vol.31 (1), p.12014-12020 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12020 |
---|---|
container_issue | 1 |
container_start_page | 12014 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 31 |
creator | Anggriani, N. Istifadah, N. Hanifah, M. Supriatna, A.K. |
description | In this paper we introduce a mathematical model for fungicide application with effect of protectant and curatives factor. We show the value of the Basic Reproduction Number (R0) of the fungal disease, which is computed from the largest eigen value of the next generation matrix of the model. The result show that in the region where R0 greater than one there is only one single stable endemic equilibrium. However, in region where R0 less than one some parameters affect the number of posibble equilibria. Some numerical simulation are also given to illustrate our analytical results. |
doi_str_mv | 10.1088/1755-1315/31/1/012014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800490990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547976102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-1a8167f1de8e32aad5e3ecd26b6d35f2033ffefc45d6e3a274863e84464d4e373</originalsourceid><addsrcrecordid>eNqF0U1LxDAQBuAiCn7-BCHgxcu6M03SpMdl8QsUPeg5xmaqkW5Tm1TYf2_XlRU86CnD8LxzyJtlxwhnCFpPUUk5QY5yynGKU8AcUGxle5v99mYGtZvtx_gGUCjBy73sacZubXqlhU2-sg27DY4aFmp234dEVbJtYrZ1bD70o_ggdjG0L77yjtis65oxk3xov4hPkcVkn33j03Lc2GYZfTzMdmrbRDr6fg-yx4vzh_nV5Obu8no-u5lUEiFN0GosVI2ONPHcWieJU-Xy4rlwXNY5cF7XVFdCuoK4zZXQBSctRCGcIK74QXa6vtv14X2gmMzCx4qaxrYUhmiwxLJUkEv9P9UAooSyhP-p0iABRjvSk1_0LQz9-AvR5FKoUhUI-ajkWlV9iLGn2nS9X9h-aRDMqk2zasqsWjMcDZp1m2MO1zkfup_Df2c-AQE8n38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547976102</pqid></control><display><type>article</type><title>A Mathematical Model of Protectant and Curative Fungicide Application and its stability analysis</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Anggriani, N. ; Istifadah, N. ; Hanifah, M. ; Supriatna, A.K.</creator><creatorcontrib>Anggriani, N. ; Istifadah, N. ; Hanifah, M. ; Supriatna, A.K.</creatorcontrib><description>In this paper we introduce a mathematical model for fungicide application with effect of protectant and curatives factor. We show the value of the Basic Reproduction Number (R0) of the fungal disease, which is computed from the largest eigen value of the next generation matrix of the model. The result show that in the region where R0 greater than one there is only one single stable endemic equilibrium. However, in region where R0 less than one some parameters affect the number of posibble equilibria. Some numerical simulation are also given to illustrate our analytical results.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/31/1/012014</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computation ; Computer simulation ; Earth ; Fungal diseases ; Fungicides ; Mathematical analysis ; Mathematical models ; Reproduction ; Stability analysis</subject><ispartof>IOP conference series. Earth and environmental science, 2016-01, Vol.31 (1), p.12014-12020</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-1a8167f1de8e32aad5e3ecd26b6d35f2033ffefc45d6e3a274863e84464d4e373</citedby><cites>FETCH-LOGICAL-c510t-1a8167f1de8e32aad5e3ecd26b6d35f2033ffefc45d6e3a274863e84464d4e373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/31/1/012014/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Anggriani, N.</creatorcontrib><creatorcontrib>Istifadah, N.</creatorcontrib><creatorcontrib>Hanifah, M.</creatorcontrib><creatorcontrib>Supriatna, A.K.</creatorcontrib><title>A Mathematical Model of Protectant and Curative Fungicide Application and its stability analysis</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>In this paper we introduce a mathematical model for fungicide application with effect of protectant and curatives factor. We show the value of the Basic Reproduction Number (R0) of the fungal disease, which is computed from the largest eigen value of the next generation matrix of the model. The result show that in the region where R0 greater than one there is only one single stable endemic equilibrium. However, in region where R0 less than one some parameters affect the number of posibble equilibria. Some numerical simulation are also given to illustrate our analytical results.</description><subject>Computation</subject><subject>Computer simulation</subject><subject>Earth</subject><subject>Fungal diseases</subject><subject>Fungicides</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Reproduction</subject><subject>Stability analysis</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1LxDAQBuAiCn7-BCHgxcu6M03SpMdl8QsUPeg5xmaqkW5Tm1TYf2_XlRU86CnD8LxzyJtlxwhnCFpPUUk5QY5yynGKU8AcUGxle5v99mYGtZvtx_gGUCjBy73sacZubXqlhU2-sg27DY4aFmp234dEVbJtYrZ1bD70o_ggdjG0L77yjtis65oxk3xov4hPkcVkn33j03Lc2GYZfTzMdmrbRDr6fg-yx4vzh_nV5Obu8no-u5lUEiFN0GosVI2ONPHcWieJU-Xy4rlwXNY5cF7XVFdCuoK4zZXQBSctRCGcIK74QXa6vtv14X2gmMzCx4qaxrYUhmiwxLJUkEv9P9UAooSyhP-p0iABRjvSk1_0LQz9-AvR5FKoUhUI-ajkWlV9iLGn2nS9X9h-aRDMqk2zasqsWjMcDZp1m2MO1zkfup_Df2c-AQE8n38</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Anggriani, N.</creator><creator>Istifadah, N.</creator><creator>Hanifah, M.</creator><creator>Supriatna, A.K.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TN</scope><scope>H96</scope></search><sort><creationdate>20160101</creationdate><title>A Mathematical Model of Protectant and Curative Fungicide Application and its stability analysis</title><author>Anggriani, N. ; Istifadah, N. ; Hanifah, M. ; Supriatna, A.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-1a8167f1de8e32aad5e3ecd26b6d35f2033ffefc45d6e3a274863e84464d4e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computation</topic><topic>Computer simulation</topic><topic>Earth</topic><topic>Fungal diseases</topic><topic>Fungicides</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Reproduction</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anggriani, N.</creatorcontrib><creatorcontrib>Istifadah, N.</creatorcontrib><creatorcontrib>Hanifah, M.</creatorcontrib><creatorcontrib>Supriatna, A.K.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Oceanic Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anggriani, N.</au><au>Istifadah, N.</au><au>Hanifah, M.</au><au>Supriatna, A.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mathematical Model of Protectant and Curative Fungicide Application and its stability analysis</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>31</volume><issue>1</issue><spage>12014</spage><epage>12020</epage><pages>12014-12020</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>In this paper we introduce a mathematical model for fungicide application with effect of protectant and curatives factor. We show the value of the Basic Reproduction Number (R0) of the fungal disease, which is computed from the largest eigen value of the next generation matrix of the model. The result show that in the region where R0 greater than one there is only one single stable endemic equilibrium. However, in region where R0 less than one some parameters affect the number of posibble equilibria. Some numerical simulation are also given to illustrate our analytical results.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/31/1/012014</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2016-01, Vol.31 (1), p.12014-12020 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800490990 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra |
subjects | Computation Computer simulation Earth Fungal diseases Fungicides Mathematical analysis Mathematical models Reproduction Stability analysis |
title | A Mathematical Model of Protectant and Curative Fungicide Application and its stability analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mathematical%20Model%20of%20Protectant%20and%20Curative%20Fungicide%20Application%20and%20its%20stability%20analysis&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Anggriani,%20N.&rft.date=2016-01-01&rft.volume=31&rft.issue=1&rft.spage=12014&rft.epage=12020&rft.pages=12014-12020&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/31/1/012014&rft_dat=%3Cproquest_cross%3E2547976102%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547976102&rft_id=info:pmid/&rfr_iscdi=true |