Hyers-Ulam-Rassias stability of first order linear partial fuzzy differential equations under generalized differentiability

In the present paper, we establish a multivariate fuzzy chain rule under generalized differentiability by extending the corresponding chain rule under H -differentiability. Based on the result, we discuss the Ulam stability problems of two types of first order linear partial fuzzy differential equat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2015-11, Vol.2015 (1), p.1-18, Article 351
1. Verfasser: Shen, Yonghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 1
container_title Advances in difference equations
container_volume 2015
creator Shen, Yonghong
description In the present paper, we establish a multivariate fuzzy chain rule under generalized differentiability by extending the corresponding chain rule under H -differentiability. Based on the result, we discuss the Ulam stability problems of two types of first order linear partial fuzzy differential equations under generalized differentiability.
doi_str_mv 10.1186/s13662-015-0685-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800488096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3897126761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-cc2b0bf082eda857f14e94b229f564a7c3995d7c29e5ec1a74b03560138877f73</originalsourceid><addsrcrecordid>eNp1kc9LwzAUx4soOKd_gLeAFy_RJG3z4yhDnTAQxJ1D2r6MjK7d8trD5j9vZz0MwVMe4fP98HjfJLnl7IFzLR-Rp1IKynhOmdQ5FWfJhEutKNeZOj-ZL5MrxDVjwmRaT5Kv-R4i0mXtNvTDIQaHBDtXhDp0e9J64kPEjrSxgkjq0ICLZOtiF1xNfH847EkVvIcIzc8X7HrXhbZB0jfHxAoaiK4OB6hOwVF_nVx4VyPc_L7TZPny_Dmb08X769vsaUHL1IiOlqUoWOGZFlA5nSvPMzBZIYTxucycGiiTV6oUBnIouVNZwdJcMp5qrZRX6TS5H73b2O56wM5uApZQ166BtkfLNWPDMZiRA3r3B123fWyG7SxXmcm1kfIo5CNVxhYxgrfbGDYu7i1n9liHHeuwQx32WIcVQ0aMGRzYZgXxxPxv6Bs32o-p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1749589667</pqid></control><display><type>article</type><title>Hyers-Ulam-Rassias stability of first order linear partial fuzzy differential equations under generalized differentiability</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Shen, Yonghong</creator><creatorcontrib>Shen, Yonghong</creatorcontrib><description>In the present paper, we establish a multivariate fuzzy chain rule under generalized differentiability by extending the corresponding chain rule under H -differentiability. Based on the result, we discuss the Ulam stability problems of two types of first order linear partial fuzzy differential equations under generalized differentiability.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-015-0685-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Chains ; Difference and Functional Equations ; Difference equations ; Differential equations ; Functional Analysis ; Fuzzy ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Stability</subject><ispartof>Advances in difference equations, 2015-11, Vol.2015 (1), p.1-18, Article 351</ispartof><rights>Shen 2015</rights><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-cc2b0bf082eda857f14e94b229f564a7c3995d7c29e5ec1a74b03560138877f73</citedby><cites>FETCH-LOGICAL-c392t-cc2b0bf082eda857f14e94b229f564a7c3995d7c29e5ec1a74b03560138877f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,27926,27927</link.rule.ids></links><search><creatorcontrib>Shen, Yonghong</creatorcontrib><title>Hyers-Ulam-Rassias stability of first order linear partial fuzzy differential equations under generalized differentiability</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>In the present paper, we establish a multivariate fuzzy chain rule under generalized differentiability by extending the corresponding chain rule under H -differentiability. Based on the result, we discuss the Ulam stability problems of two types of first order linear partial fuzzy differential equations under generalized differentiability.</description><subject>Analysis</subject><subject>Chains</subject><subject>Difference and Functional Equations</subject><subject>Difference equations</subject><subject>Differential equations</subject><subject>Functional Analysis</subject><subject>Fuzzy</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Stability</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc9LwzAUx4soOKd_gLeAFy_RJG3z4yhDnTAQxJ1D2r6MjK7d8trD5j9vZz0MwVMe4fP98HjfJLnl7IFzLR-Rp1IKynhOmdQ5FWfJhEutKNeZOj-ZL5MrxDVjwmRaT5Kv-R4i0mXtNvTDIQaHBDtXhDp0e9J64kPEjrSxgkjq0ICLZOtiF1xNfH847EkVvIcIzc8X7HrXhbZB0jfHxAoaiK4OB6hOwVF_nVx4VyPc_L7TZPny_Dmb08X769vsaUHL1IiOlqUoWOGZFlA5nSvPMzBZIYTxucycGiiTV6oUBnIouVNZwdJcMp5qrZRX6TS5H73b2O56wM5uApZQ166BtkfLNWPDMZiRA3r3B123fWyG7SxXmcm1kfIo5CNVxhYxgrfbGDYu7i1n9liHHeuwQx32WIcVQ0aMGRzYZgXxxPxv6Bs32o-p</recordid><startdate>20151117</startdate><enddate>20151117</enddate><creator>Shen, Yonghong</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20151117</creationdate><title>Hyers-Ulam-Rassias stability of first order linear partial fuzzy differential equations under generalized differentiability</title><author>Shen, Yonghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-cc2b0bf082eda857f14e94b229f564a7c3995d7c29e5ec1a74b03560138877f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Chains</topic><topic>Difference and Functional Equations</topic><topic>Difference equations</topic><topic>Differential equations</topic><topic>Functional Analysis</topic><topic>Fuzzy</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Yonghong</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Yonghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyers-Ulam-Rassias stability of first order linear partial fuzzy differential equations under generalized differentiability</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2015-11-17</date><risdate>2015</risdate><volume>2015</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><artnum>351</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>In the present paper, we establish a multivariate fuzzy chain rule under generalized differentiability by extending the corresponding chain rule under H -differentiability. Based on the result, we discuss the Ulam stability problems of two types of first order linear partial fuzzy differential equations under generalized differentiability.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-015-0685-2</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1847
ispartof Advances in difference equations, 2015-11, Vol.2015 (1), p.1-18, Article 351
issn 1687-1847
1687-1839
1687-1847
language eng
recordid cdi_proquest_miscellaneous_1800488096
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis
Chains
Difference and Functional Equations
Difference equations
Differential equations
Functional Analysis
Fuzzy
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Stability
title Hyers-Ulam-Rassias stability of first order linear partial fuzzy differential equations under generalized differentiability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyers-Ulam-Rassias%20stability%20of%20first%20order%20linear%20partial%20fuzzy%20differential%20equations%20under%20generalized%20differentiability&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Shen,%20Yonghong&rft.date=2015-11-17&rft.volume=2015&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.artnum=351&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-015-0685-2&rft_dat=%3Cproquest_cross%3E3897126761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1749589667&rft_id=info:pmid/&rfr_iscdi=true