Convergence analysis of a block improvement method for polynomial optimization over unit spheres

Summary In this paper, we study the convergence property of a block improvement method (BIM) for the bi‐quadratic polynomial optimization problem over unit spheres. We establish the global convergence of the method generally and establish its linear convergence rate under the second‐order sufficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2015-12, Vol.22 (6), p.1059-1076
Hauptverfasser: Wang, Yiju, Caccetta, Louis, Zhou, Guanglu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1076
container_issue 6
container_start_page 1059
container_title Numerical linear algebra with applications
container_volume 22
creator Wang, Yiju
Caccetta, Louis
Zhou, Guanglu
description Summary In this paper, we study the convergence property of a block improvement method (BIM) for the bi‐quadratic polynomial optimization problem over unit spheres. We establish the global convergence of the method generally and establish its linear convergence rate under the second‐order sufficient condition. We also extend the BIM to inhomogeneous polynomial optimization problems over unit spheres. Numerical results reported in this paper show that the method is promising. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nla.1996
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800487435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3923686951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4346-cd32ba350315116cc42994cb551ffc195b863551990957d70da8088717cc51d3</originalsourceid><addsrcrecordid>eNp10FFLwzAQB_AiCuoU_AgBX3zpvDRN0zyOoVMZ-uBA32KWphpNk5p00_np7ZgoCj7dHfw47v5JcoRhiAGyU2flEHNebCV7GDhPMYVie90zSCnJ6G6yH-MzABSUk73kYezdUodH7ZRG0km7iiYiXyOJ5tarF2SaNvilbrTrUKO7J1-h2gfUertyvjHSIt92pjEfsjPeoZ4GtHCmQ7F90kHHg2Snljbqw686SGbnZ7PxRTq9mVyOR9NU5SQvUlWRbC4JBYIpxoVSecZ5ruaU4rpWmNN5WZB-4Bw4ZRWDSpZQlgwzpSiuyCA52aztr31d6NiJxkSlrZVO-0UUuATIS5YT2tPjP_TZL0L_eq8YZbTMciA_C1XwMQZdizaYRoaVwCDWSYs-abFOuqfphr4Zq1f_OnE9Hf32Jnb6_dvL8CIKRhgVd9cTwS7G7Cq7vxU5-QSsHI3z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757582403</pqid></control><display><type>article</type><title>Convergence analysis of a block improvement method for polynomial optimization over unit spheres</title><source>Access via Wiley Online Library</source><creator>Wang, Yiju ; Caccetta, Louis ; Zhou, Guanglu</creator><creatorcontrib>Wang, Yiju ; Caccetta, Louis ; Zhou, Guanglu</creatorcontrib><description>Summary In this paper, we study the convergence property of a block improvement method (BIM) for the bi‐quadratic polynomial optimization problem over unit spheres. We establish the global convergence of the method generally and establish its linear convergence rate under the second‐order sufficient condition. We also extend the BIM to inhomogeneous polynomial optimization problems over unit spheres. Numerical results reported in this paper show that the method is promising. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1070-5325</identifier><identifier>EISSN: 1099-1506</identifier><identifier>DOI: 10.1002/nla.1996</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>bi-quadratic optimization ; block improvement method ; Blocking ; Convergence ; Linear algebra ; Mathematical models ; Online ; Optimization ; Polynomials</subject><ispartof>Numerical linear algebra with applications, 2015-12, Vol.22 (6), p.1059-1076</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4346-cd32ba350315116cc42994cb551ffc195b863551990957d70da8088717cc51d3</citedby><cites>FETCH-LOGICAL-c4346-cd32ba350315116cc42994cb551ffc195b863551990957d70da8088717cc51d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnla.1996$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnla.1996$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Yiju</creatorcontrib><creatorcontrib>Caccetta, Louis</creatorcontrib><creatorcontrib>Zhou, Guanglu</creatorcontrib><title>Convergence analysis of a block improvement method for polynomial optimization over unit spheres</title><title>Numerical linear algebra with applications</title><addtitle>Numer. Linear Algebra Appl</addtitle><description>Summary In this paper, we study the convergence property of a block improvement method (BIM) for the bi‐quadratic polynomial optimization problem over unit spheres. We establish the global convergence of the method generally and establish its linear convergence rate under the second‐order sufficient condition. We also extend the BIM to inhomogeneous polynomial optimization problems over unit spheres. Numerical results reported in this paper show that the method is promising. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>bi-quadratic optimization</subject><subject>block improvement method</subject><subject>Blocking</subject><subject>Convergence</subject><subject>Linear algebra</subject><subject>Mathematical models</subject><subject>Online</subject><subject>Optimization</subject><subject>Polynomials</subject><issn>1070-5325</issn><issn>1099-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10FFLwzAQB_AiCuoU_AgBX3zpvDRN0zyOoVMZ-uBA32KWphpNk5p00_np7ZgoCj7dHfw47v5JcoRhiAGyU2flEHNebCV7GDhPMYVie90zSCnJ6G6yH-MzABSUk73kYezdUodH7ZRG0km7iiYiXyOJ5tarF2SaNvilbrTrUKO7J1-h2gfUertyvjHSIt92pjEfsjPeoZ4GtHCmQ7F90kHHg2Snljbqw686SGbnZ7PxRTq9mVyOR9NU5SQvUlWRbC4JBYIpxoVSecZ5ruaU4rpWmNN5WZB-4Bw4ZRWDSpZQlgwzpSiuyCA52aztr31d6NiJxkSlrZVO-0UUuATIS5YT2tPjP_TZL0L_eq8YZbTMciA_C1XwMQZdizaYRoaVwCDWSYs-abFOuqfphr4Zq1f_OnE9Hf32Jnb6_dvL8CIKRhgVd9cTwS7G7Cq7vxU5-QSsHI3z</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Wang, Yiju</creator><creator>Caccetta, Louis</creator><creator>Zhou, Guanglu</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201512</creationdate><title>Convergence analysis of a block improvement method for polynomial optimization over unit spheres</title><author>Wang, Yiju ; Caccetta, Louis ; Zhou, Guanglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4346-cd32ba350315116cc42994cb551ffc195b863551990957d70da8088717cc51d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>bi-quadratic optimization</topic><topic>block improvement method</topic><topic>Blocking</topic><topic>Convergence</topic><topic>Linear algebra</topic><topic>Mathematical models</topic><topic>Online</topic><topic>Optimization</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yiju</creatorcontrib><creatorcontrib>Caccetta, Louis</creatorcontrib><creatorcontrib>Zhou, Guanglu</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical linear algebra with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yiju</au><au>Caccetta, Louis</au><au>Zhou, Guanglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence analysis of a block improvement method for polynomial optimization over unit spheres</atitle><jtitle>Numerical linear algebra with applications</jtitle><addtitle>Numer. Linear Algebra Appl</addtitle><date>2015-12</date><risdate>2015</risdate><volume>22</volume><issue>6</issue><spage>1059</spage><epage>1076</epage><pages>1059-1076</pages><issn>1070-5325</issn><eissn>1099-1506</eissn><abstract>Summary In this paper, we study the convergence property of a block improvement method (BIM) for the bi‐quadratic polynomial optimization problem over unit spheres. We establish the global convergence of the method generally and establish its linear convergence rate under the second‐order sufficient condition. We also extend the BIM to inhomogeneous polynomial optimization problems over unit spheres. Numerical results reported in this paper show that the method is promising. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nla.1996</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-5325
ispartof Numerical linear algebra with applications, 2015-12, Vol.22 (6), p.1059-1076
issn 1070-5325
1099-1506
language eng
recordid cdi_proquest_miscellaneous_1800487435
source Access via Wiley Online Library
subjects bi-quadratic optimization
block improvement method
Blocking
Convergence
Linear algebra
Mathematical models
Online
Optimization
Polynomials
title Convergence analysis of a block improvement method for polynomial optimization over unit spheres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20analysis%20of%20a%20block%20improvement%20method%20for%20polynomial%20optimization%20over%20unit%20spheres&rft.jtitle=Numerical%20linear%20algebra%20with%20applications&rft.au=Wang,%20Yiju&rft.date=2015-12&rft.volume=22&rft.issue=6&rft.spage=1059&rft.epage=1076&rft.pages=1059-1076&rft.issn=1070-5325&rft.eissn=1099-1506&rft_id=info:doi/10.1002/nla.1996&rft_dat=%3Cproquest_cross%3E3923686951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757582403&rft_id=info:pmid/&rfr_iscdi=true