Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs

Boreal lakes are impacted by climate change, reduced acid deposition, and changing loads of dissolved organic carbon (DOC) from catchments. We explored, using the process‐based lake model MyLake, how changes in these pressures modulate ice phenology and the dissolved oxygen concentrations (DO) of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Biogeosciences 2015-11, Vol.120 (11), p.2441-2456
Hauptverfasser: Couture, Raoul-Marie, de Wit, Heleen A., Tominaga, Koji, Kiuru, Petri, Markelov, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2456
container_issue 11
container_start_page 2441
container_title Journal of geophysical research. Biogeosciences
container_volume 120
creator Couture, Raoul-Marie
de Wit, Heleen A.
Tominaga, Koji
Kiuru, Petri
Markelov, Igor
description Boreal lakes are impacted by climate change, reduced acid deposition, and changing loads of dissolved organic carbon (DOC) from catchments. We explored, using the process‐based lake model MyLake, how changes in these pressures modulate ice phenology and the dissolved oxygen concentrations (DO) of a small boreal humic lake. The model was parametrized against year‐round time series of water temperature and DO from a lake buoy. Observed trends in air temperature (+0.045°C yr−1) and DOC concentration (0.11 mg C L−1 yr−1, +1% annually) over the past 40 years were used as model forcings. A backcast of ice freezing and breakup dates revealed that ice breakup occurred on average 8 days earlier in 2014 than in 1974. The earlier ice breakup enhanced water column ventilation resulting in higher DO in the spring. Warmer water in late summer led to longer anoxic periods, as microbial DOC turnover increased. A long‐term increase in DOC concentrations caused a decline in lake DO, leading to 15% more hypoxic days (
doi_str_mv 10.1002/2015JG003065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800485704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3929279261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4927-c5242974b0f23f5b4e79a4584ddaca6e1b27758e85080c1c5ce1ff66d8514f4c3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBuAIgUTV9sYPsMSFw4Z6HDt2jmihKdWKlcpHj5bXmeym9drBzorm3-OyqEIcwBdb1jPW65mieAX0LVDKLhgFcd1SWtFaPCtOGNRNqZoanj-dRfWyOE_pjual8hXASbFbP8xb9KSbvdkPNpHBE0M2IaJxxJl7JBHTGHyXyBSIC35bThj3xO6M3-Ivbt2wNxMuyGCRjDv0wYXtvCDGd-T9epnJeJjSWfGiNy7h-e_9tPh6-eHL8qpcrduPy3er0vKGydIKxlkj-Yb2rOrFhqNsDBeKd52xpkbYMCmFQiWoohassAh9X9edEsB7bqvT4s3x3TGG7wdMk94PyaJzxmM4JA2KUq6EpPz_VCoqIPdQZvr6L3oXDtHnj2QlVNM0QCGrxVHZGFKK2Osx5t7EWQPVj0PSfw4p8-rIfwwO539afd3etCwHf4xSHquGNOHDU5WJ9zoHlULffmr16ubzt1t2BbqtfgKnuJ-2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1758999101</pqid></control><display><type>article</type><title>Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Couture, Raoul-Marie ; de Wit, Heleen A. ; Tominaga, Koji ; Kiuru, Petri ; Markelov, Igor</creator><creatorcontrib>Couture, Raoul-Marie ; de Wit, Heleen A. ; Tominaga, Koji ; Kiuru, Petri ; Markelov, Igor</creatorcontrib><description>Boreal lakes are impacted by climate change, reduced acid deposition, and changing loads of dissolved organic carbon (DOC) from catchments. We explored, using the process‐based lake model MyLake, how changes in these pressures modulate ice phenology and the dissolved oxygen concentrations (DO) of a small boreal humic lake. The model was parametrized against year‐round time series of water temperature and DO from a lake buoy. Observed trends in air temperature (+0.045°C yr−1) and DOC concentration (0.11 mg C L−1 yr−1, +1% annually) over the past 40 years were used as model forcings. A backcast of ice freezing and breakup dates revealed that ice breakup occurred on average 8 days earlier in 2014 than in 1974. The earlier ice breakup enhanced water column ventilation resulting in higher DO in the spring. Warmer water in late summer led to longer anoxic periods, as microbial DOC turnover increased. A long‐term increase in DOC concentrations caused a decline in lake DO, leading to 15% more hypoxic days (&lt;3 mg L−1) and 10% more anoxic days (&lt;15 µg L−1) in 2014 than in 1974. We conclude that climate warming and increasing DOC loads are antagonistic with respect to their effect on DO availability. The model suggests that DOC is a stronger driver of DO consumption than temperature. The browning of lakes may thus cause reductions in the oxythermal habitat of fish and aquatic biota in boreal lakes. Key Points Increasing DOC load over the past 30 years lengthened anoxic periods in lake Increasing air temperature shortened ice cover and caused enhanced water column ventilation The effect of DOC and temperature on DO is compared using a process‐based model</description><identifier>ISSN: 2169-8953</identifier><identifier>EISSN: 2169-8961</identifier><identifier>DOI: 10.1002/2015JG003065</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Acid deposition ; Air temperature ; and modeling ; Aquatic animals ; biogeochemical cycles ; biogeochemical cycles, processes, and modeling ; Biota ; Breakup ; carbon cycling ; catchment ; Climate ; Climate change ; Dissolution ; Dissolved organic carbon ; Dissolved oxygen ; Freezing ; Freshwater ; gases ; Global warming ; Hypoxia ; ice ; Ice breakup ; Ice cover ; Lakes ; Limnology ; Oxygen ; Phenology ; Pollutant deposition ; processes ; Ventilation ; Water circulation ; Water column ; Water temperature</subject><ispartof>Journal of geophysical research. Biogeosciences, 2015-11, Vol.120 (11), p.2441-2456</ispartof><rights>2015. The Authors.</rights><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4927-c5242974b0f23f5b4e79a4584ddaca6e1b27758e85080c1c5ce1ff66d8514f4c3</citedby><cites>FETCH-LOGICAL-c4927-c5242974b0f23f5b4e79a4584ddaca6e1b27758e85080c1c5ce1ff66d8514f4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JG003065$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JG003065$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Couture, Raoul-Marie</creatorcontrib><creatorcontrib>de Wit, Heleen A.</creatorcontrib><creatorcontrib>Tominaga, Koji</creatorcontrib><creatorcontrib>Kiuru, Petri</creatorcontrib><creatorcontrib>Markelov, Igor</creatorcontrib><title>Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs</title><title>Journal of geophysical research. Biogeosciences</title><addtitle>J. Geophys. Res. Biogeosci</addtitle><description>Boreal lakes are impacted by climate change, reduced acid deposition, and changing loads of dissolved organic carbon (DOC) from catchments. We explored, using the process‐based lake model MyLake, how changes in these pressures modulate ice phenology and the dissolved oxygen concentrations (DO) of a small boreal humic lake. The model was parametrized against year‐round time series of water temperature and DO from a lake buoy. Observed trends in air temperature (+0.045°C yr−1) and DOC concentration (0.11 mg C L−1 yr−1, +1% annually) over the past 40 years were used as model forcings. A backcast of ice freezing and breakup dates revealed that ice breakup occurred on average 8 days earlier in 2014 than in 1974. The earlier ice breakup enhanced water column ventilation resulting in higher DO in the spring. Warmer water in late summer led to longer anoxic periods, as microbial DOC turnover increased. A long‐term increase in DOC concentrations caused a decline in lake DO, leading to 15% more hypoxic days (&lt;3 mg L−1) and 10% more anoxic days (&lt;15 µg L−1) in 2014 than in 1974. We conclude that climate warming and increasing DOC loads are antagonistic with respect to their effect on DO availability. The model suggests that DOC is a stronger driver of DO consumption than temperature. The browning of lakes may thus cause reductions in the oxythermal habitat of fish and aquatic biota in boreal lakes. Key Points Increasing DOC load over the past 30 years lengthened anoxic periods in lake Increasing air temperature shortened ice cover and caused enhanced water column ventilation The effect of DOC and temperature on DO is compared using a process‐based model</description><subject>Acid deposition</subject><subject>Air temperature</subject><subject>and modeling</subject><subject>Aquatic animals</subject><subject>biogeochemical cycles</subject><subject>biogeochemical cycles, processes, and modeling</subject><subject>Biota</subject><subject>Breakup</subject><subject>carbon cycling</subject><subject>catchment</subject><subject>Climate</subject><subject>Climate change</subject><subject>Dissolution</subject><subject>Dissolved organic carbon</subject><subject>Dissolved oxygen</subject><subject>Freezing</subject><subject>Freshwater</subject><subject>gases</subject><subject>Global warming</subject><subject>Hypoxia</subject><subject>ice</subject><subject>Ice breakup</subject><subject>Ice cover</subject><subject>Lakes</subject><subject>Limnology</subject><subject>Oxygen</subject><subject>Phenology</subject><subject>Pollutant deposition</subject><subject>processes</subject><subject>Ventilation</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Water temperature</subject><issn>2169-8953</issn><issn>2169-8961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqF0U1v1DAQBuAIgUTV9sYPsMSFw4Z6HDt2jmihKdWKlcpHj5bXmeym9drBzorm3-OyqEIcwBdb1jPW65mieAX0LVDKLhgFcd1SWtFaPCtOGNRNqZoanj-dRfWyOE_pjual8hXASbFbP8xb9KSbvdkPNpHBE0M2IaJxxJl7JBHTGHyXyBSIC35bThj3xO6M3-Ivbt2wNxMuyGCRjDv0wYXtvCDGd-T9epnJeJjSWfGiNy7h-e_9tPh6-eHL8qpcrduPy3er0vKGydIKxlkj-Yb2rOrFhqNsDBeKd52xpkbYMCmFQiWoohassAh9X9edEsB7bqvT4s3x3TGG7wdMk94PyaJzxmM4JA2KUq6EpPz_VCoqIPdQZvr6L3oXDtHnj2QlVNM0QCGrxVHZGFKK2Osx5t7EWQPVj0PSfw4p8-rIfwwO539afd3etCwHf4xSHquGNOHDU5WJ9zoHlULffmr16ubzt1t2BbqtfgKnuJ-2</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Couture, Raoul-Marie</creator><creator>de Wit, Heleen A.</creator><creator>Tominaga, Koji</creator><creator>Kiuru, Petri</creator><creator>Markelov, Igor</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201511</creationdate><title>Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs</title><author>Couture, Raoul-Marie ; de Wit, Heleen A. ; Tominaga, Koji ; Kiuru, Petri ; Markelov, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4927-c5242974b0f23f5b4e79a4584ddaca6e1b27758e85080c1c5ce1ff66d8514f4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acid deposition</topic><topic>Air temperature</topic><topic>and modeling</topic><topic>Aquatic animals</topic><topic>biogeochemical cycles</topic><topic>biogeochemical cycles, processes, and modeling</topic><topic>Biota</topic><topic>Breakup</topic><topic>carbon cycling</topic><topic>catchment</topic><topic>Climate</topic><topic>Climate change</topic><topic>Dissolution</topic><topic>Dissolved organic carbon</topic><topic>Dissolved oxygen</topic><topic>Freezing</topic><topic>Freshwater</topic><topic>gases</topic><topic>Global warming</topic><topic>Hypoxia</topic><topic>ice</topic><topic>Ice breakup</topic><topic>Ice cover</topic><topic>Lakes</topic><topic>Limnology</topic><topic>Oxygen</topic><topic>Phenology</topic><topic>Pollutant deposition</topic><topic>processes</topic><topic>Ventilation</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Couture, Raoul-Marie</creatorcontrib><creatorcontrib>de Wit, Heleen A.</creatorcontrib><creatorcontrib>Tominaga, Koji</creatorcontrib><creatorcontrib>Kiuru, Petri</creatorcontrib><creatorcontrib>Markelov, Igor</creatorcontrib><collection>Istex</collection><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Couture, Raoul-Marie</au><au>de Wit, Heleen A.</au><au>Tominaga, Koji</au><au>Kiuru, Petri</au><au>Markelov, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs</atitle><jtitle>Journal of geophysical research. Biogeosciences</jtitle><addtitle>J. Geophys. Res. Biogeosci</addtitle><date>2015-11</date><risdate>2015</risdate><volume>120</volume><issue>11</issue><spage>2441</spage><epage>2456</epage><pages>2441-2456</pages><issn>2169-8953</issn><eissn>2169-8961</eissn><abstract>Boreal lakes are impacted by climate change, reduced acid deposition, and changing loads of dissolved organic carbon (DOC) from catchments. We explored, using the process‐based lake model MyLake, how changes in these pressures modulate ice phenology and the dissolved oxygen concentrations (DO) of a small boreal humic lake. The model was parametrized against year‐round time series of water temperature and DO from a lake buoy. Observed trends in air temperature (+0.045°C yr−1) and DOC concentration (0.11 mg C L−1 yr−1, +1% annually) over the past 40 years were used as model forcings. A backcast of ice freezing and breakup dates revealed that ice breakup occurred on average 8 days earlier in 2014 than in 1974. The earlier ice breakup enhanced water column ventilation resulting in higher DO in the spring. Warmer water in late summer led to longer anoxic periods, as microbial DOC turnover increased. A long‐term increase in DOC concentrations caused a decline in lake DO, leading to 15% more hypoxic days (&lt;3 mg L−1) and 10% more anoxic days (&lt;15 µg L−1) in 2014 than in 1974. We conclude that climate warming and increasing DOC loads are antagonistic with respect to their effect on DO availability. The model suggests that DOC is a stronger driver of DO consumption than temperature. The browning of lakes may thus cause reductions in the oxythermal habitat of fish and aquatic biota in boreal lakes. Key Points Increasing DOC load over the past 30 years lengthened anoxic periods in lake Increasing air temperature shortened ice cover and caused enhanced water column ventilation The effect of DOC and temperature on DO is compared using a process‐based model</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JG003065</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-8953
ispartof Journal of geophysical research. Biogeosciences, 2015-11, Vol.120 (11), p.2441-2456
issn 2169-8953
2169-8961
language eng
recordid cdi_proquest_miscellaneous_1800485704
source Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Acid deposition
Air temperature
and modeling
Aquatic animals
biogeochemical cycles
biogeochemical cycles, processes, and modeling
Biota
Breakup
carbon cycling
catchment
Climate
Climate change
Dissolution
Dissolved organic carbon
Dissolved oxygen
Freezing
Freshwater
gases
Global warming
Hypoxia
ice
Ice breakup
Ice cover
Lakes
Limnology
Oxygen
Phenology
Pollutant deposition
processes
Ventilation
Water circulation
Water column
Water temperature
title Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20dynamics%20in%20a%20boreal%20lake%20responds%20to%20long-term%20changes%20in%20climate,%20ice%20phenology,%20and%20DOC%20inputs&rft.jtitle=Journal%20of%20geophysical%20research.%20Biogeosciences&rft.au=Couture,%20Raoul-Marie&rft.date=2015-11&rft.volume=120&rft.issue=11&rft.spage=2441&rft.epage=2456&rft.pages=2441-2456&rft.issn=2169-8953&rft.eissn=2169-8961&rft_id=info:doi/10.1002/2015JG003065&rft_dat=%3Cproquest_cross%3E3929279261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1758999101&rft_id=info:pmid/&rfr_iscdi=true