Structural characterization, thermal properties, and density functional theory studies of PMMA-maghemite hybrid material

Maghemite (γ‐Fe2O3)‐poly(methyl methacrylate) (PMMA) nanocomposites were prepared by grafting 3‐(trimethoxy‐silyl) propyl methacrylate on the surface of maghemite nanoparticles, this process being followed by methyl methacrylate radical polymerization. Three different hybrids with 0.1, 0.5, and 2.5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2016-01, Vol.37 (1), p.51-60
Hauptverfasser: Rocha, Marcus V.J., de Carvalho, Hudson W.P., Sarmento, Victor H.V., Craievich, Aldo F., Ramalho, Teodorico C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 51
container_title Polymer composites
container_volume 37
creator Rocha, Marcus V.J.
de Carvalho, Hudson W.P.
Sarmento, Victor H.V.
Craievich, Aldo F.
Ramalho, Teodorico C.
description Maghemite (γ‐Fe2O3)‐poly(methyl methacrylate) (PMMA) nanocomposites were prepared by grafting 3‐(trimethoxy‐silyl) propyl methacrylate on the surface of maghemite nanoparticles, this process being followed by methyl methacrylate radical polymerization. Three different hybrids with 0.1, 0.5, and 2.5 wt% of maghemite nanoparticles were studied. The results indicate that these nanocomposites consist of a homogeneous PMMA matrix in which maghemite nanoparticles with a bimodal size distribution are embedded. The existence of covalent bonding between silane monomers and atoms on the maghemite surface was evidenced. AFM images showed a clear increase in surface roughness for increasing maghemite content. The thermal stability of PMMA‐maghemite nanocomposites is higher than that of pure PMMA and increases for increasing maghemite content. The results of our theoretical studies indicate that the electron density in the maghemite nanoparticle is not homogenous, the low electron density volumes being supposed to be radical trappers during PMMA decomposition, thus acting as a thermal stabilizer. POLYM. COMPOS., 51–60, 2016. © 2014 Society of Plastics Engineers
doi_str_mv 10.1002/pc.23154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800485276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800485276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4344-45089b1ae2cfd95abd7ac1ba558fa049f2175074aea15b5c90e71445b63fe91d3</originalsourceid><addsrcrecordid>eNp10U9LHTEQAPBQKvTVFvoRAr304Gqym2w2R3mv2opaQYvHMJud7Yvdf02y6PbTN0-lBaFzmDnMjxmGIeQDZ4ecsfxosod5waV4RVYpVxmTpX5NVixXeVYVWr0hb0O4S5KXZbEiD9fRzzbOHjpqt-DBRvTuN0Q3Dgc0btH3qTP5cUIfHYYDCkNDGxyCiwtt58HuZCKJjn6hIc5NYnRs6dXFxXHWw48t9i4i3S61dw3tYbcAundkr4Uu4Pvnuk--n3y-WX_Jzr-dfl0fn2dWFEJkQrJK1xwwt22jJdSNAstrkLJqgQnd5lxJpgQgcFlLqxkqLoSsy6JFzZtin3x6mptu-DVjiKZ3wWLXwYDjHAyvGBOVzFWZ6McX9G6cfTouKSVVqVLofwOtH0Pw2JrJux78YjgzuxeYyZrHFySaPdF71-HyX2eu1i-8CxEf_nrwP02pCiXN7eWpudmc3W6upTab4g8-i5fR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757677779</pqid></control><display><type>article</type><title>Structural characterization, thermal properties, and density functional theory studies of PMMA-maghemite hybrid material</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rocha, Marcus V.J. ; de Carvalho, Hudson W.P. ; Sarmento, Victor H.V. ; Craievich, Aldo F. ; Ramalho, Teodorico C.</creator><creatorcontrib>Rocha, Marcus V.J. ; de Carvalho, Hudson W.P. ; Sarmento, Victor H.V. ; Craievich, Aldo F. ; Ramalho, Teodorico C.</creatorcontrib><description>Maghemite (γ‐Fe2O3)‐poly(methyl methacrylate) (PMMA) nanocomposites were prepared by grafting 3‐(trimethoxy‐silyl) propyl methacrylate on the surface of maghemite nanoparticles, this process being followed by methyl methacrylate radical polymerization. Three different hybrids with 0.1, 0.5, and 2.5 wt% of maghemite nanoparticles were studied. The results indicate that these nanocomposites consist of a homogeneous PMMA matrix in which maghemite nanoparticles with a bimodal size distribution are embedded. The existence of covalent bonding between silane monomers and atoms on the maghemite surface was evidenced. AFM images showed a clear increase in surface roughness for increasing maghemite content. The thermal stability of PMMA‐maghemite nanocomposites is higher than that of pure PMMA and increases for increasing maghemite content. The results of our theoretical studies indicate that the electron density in the maghemite nanoparticle is not homogenous, the low electron density volumes being supposed to be radical trappers during PMMA decomposition, thus acting as a thermal stabilizer. POLYM. COMPOS., 51–60, 2016. © 2014 Society of Plastics Engineers</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.23154</identifier><identifier>CODEN: PCOMDI</identifier><language>eng</language><publisher>Newtown: Blackwell Publishing Ltd</publisher><subject>Electron density ; Monomers ; Nanocomposites ; Nanoparticles ; Polymerization ; Polymethyl methacrylates ; Radicals ; Thermal properties</subject><ispartof>Polymer composites, 2016-01, Vol.37 (1), p.51-60</ispartof><rights>2014 Society of Plastics Engineers</rights><rights>2016 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4344-45089b1ae2cfd95abd7ac1ba558fa049f2175074aea15b5c90e71445b63fe91d3</citedby><cites>FETCH-LOGICAL-c4344-45089b1ae2cfd95abd7ac1ba558fa049f2175074aea15b5c90e71445b63fe91d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.23154$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.23154$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27904,27905,45554,45555</link.rule.ids></links><search><creatorcontrib>Rocha, Marcus V.J.</creatorcontrib><creatorcontrib>de Carvalho, Hudson W.P.</creatorcontrib><creatorcontrib>Sarmento, Victor H.V.</creatorcontrib><creatorcontrib>Craievich, Aldo F.</creatorcontrib><creatorcontrib>Ramalho, Teodorico C.</creatorcontrib><title>Structural characterization, thermal properties, and density functional theory studies of PMMA-maghemite hybrid material</title><title>Polymer composites</title><addtitle>Polym. Compos</addtitle><description>Maghemite (γ‐Fe2O3)‐poly(methyl methacrylate) (PMMA) nanocomposites were prepared by grafting 3‐(trimethoxy‐silyl) propyl methacrylate on the surface of maghemite nanoparticles, this process being followed by methyl methacrylate radical polymerization. Three different hybrids with 0.1, 0.5, and 2.5 wt% of maghemite nanoparticles were studied. The results indicate that these nanocomposites consist of a homogeneous PMMA matrix in which maghemite nanoparticles with a bimodal size distribution are embedded. The existence of covalent bonding between silane monomers and atoms on the maghemite surface was evidenced. AFM images showed a clear increase in surface roughness for increasing maghemite content. The thermal stability of PMMA‐maghemite nanocomposites is higher than that of pure PMMA and increases for increasing maghemite content. The results of our theoretical studies indicate that the electron density in the maghemite nanoparticle is not homogenous, the low electron density volumes being supposed to be radical trappers during PMMA decomposition, thus acting as a thermal stabilizer. POLYM. COMPOS., 51–60, 2016. © 2014 Society of Plastics Engineers</description><subject>Electron density</subject><subject>Monomers</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polymerization</subject><subject>Polymethyl methacrylates</subject><subject>Radicals</subject><subject>Thermal properties</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10U9LHTEQAPBQKvTVFvoRAr304Gqym2w2R3mv2opaQYvHMJud7Yvdf02y6PbTN0-lBaFzmDnMjxmGIeQDZ4ecsfxosod5waV4RVYpVxmTpX5NVixXeVYVWr0hb0O4S5KXZbEiD9fRzzbOHjpqt-DBRvTuN0Q3Dgc0btH3qTP5cUIfHYYDCkNDGxyCiwtt58HuZCKJjn6hIc5NYnRs6dXFxXHWw48t9i4i3S61dw3tYbcAundkr4Uu4Pvnuk--n3y-WX_Jzr-dfl0fn2dWFEJkQrJK1xwwt22jJdSNAstrkLJqgQnd5lxJpgQgcFlLqxkqLoSsy6JFzZtin3x6mptu-DVjiKZ3wWLXwYDjHAyvGBOVzFWZ6McX9G6cfTouKSVVqVLofwOtH0Pw2JrJux78YjgzuxeYyZrHFySaPdF71-HyX2eu1i-8CxEf_nrwP02pCiXN7eWpudmc3W6upTab4g8-i5fR</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Rocha, Marcus V.J.</creator><creator>de Carvalho, Hudson W.P.</creator><creator>Sarmento, Victor H.V.</creator><creator>Craievich, Aldo F.</creator><creator>Ramalho, Teodorico C.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201601</creationdate><title>Structural characterization, thermal properties, and density functional theory studies of PMMA-maghemite hybrid material</title><author>Rocha, Marcus V.J. ; de Carvalho, Hudson W.P. ; Sarmento, Victor H.V. ; Craievich, Aldo F. ; Ramalho, Teodorico C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4344-45089b1ae2cfd95abd7ac1ba558fa049f2175074aea15b5c90e71445b63fe91d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Electron density</topic><topic>Monomers</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polymerization</topic><topic>Polymethyl methacrylates</topic><topic>Radicals</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha, Marcus V.J.</creatorcontrib><creatorcontrib>de Carvalho, Hudson W.P.</creatorcontrib><creatorcontrib>Sarmento, Victor H.V.</creatorcontrib><creatorcontrib>Craievich, Aldo F.</creatorcontrib><creatorcontrib>Ramalho, Teodorico C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha, Marcus V.J.</au><au>de Carvalho, Hudson W.P.</au><au>Sarmento, Victor H.V.</au><au>Craievich, Aldo F.</au><au>Ramalho, Teodorico C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural characterization, thermal properties, and density functional theory studies of PMMA-maghemite hybrid material</atitle><jtitle>Polymer composites</jtitle><addtitle>Polym. Compos</addtitle><date>2016-01</date><risdate>2016</risdate><volume>37</volume><issue>1</issue><spage>51</spage><epage>60</epage><pages>51-60</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><coden>PCOMDI</coden><abstract>Maghemite (γ‐Fe2O3)‐poly(methyl methacrylate) (PMMA) nanocomposites were prepared by grafting 3‐(trimethoxy‐silyl) propyl methacrylate on the surface of maghemite nanoparticles, this process being followed by methyl methacrylate radical polymerization. Three different hybrids with 0.1, 0.5, and 2.5 wt% of maghemite nanoparticles were studied. The results indicate that these nanocomposites consist of a homogeneous PMMA matrix in which maghemite nanoparticles with a bimodal size distribution are embedded. The existence of covalent bonding between silane monomers and atoms on the maghemite surface was evidenced. AFM images showed a clear increase in surface roughness for increasing maghemite content. The thermal stability of PMMA‐maghemite nanocomposites is higher than that of pure PMMA and increases for increasing maghemite content. The results of our theoretical studies indicate that the electron density in the maghemite nanoparticle is not homogenous, the low electron density volumes being supposed to be radical trappers during PMMA decomposition, thus acting as a thermal stabilizer. POLYM. COMPOS., 51–60, 2016. © 2014 Society of Plastics Engineers</abstract><cop>Newtown</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pc.23154</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2016-01, Vol.37 (1), p.51-60
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_miscellaneous_1800485276
source Wiley Online Library Journals Frontfile Complete
subjects Electron density
Monomers
Nanocomposites
Nanoparticles
Polymerization
Polymethyl methacrylates
Radicals
Thermal properties
title Structural characterization, thermal properties, and density functional theory studies of PMMA-maghemite hybrid material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A43%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20characterization,%20thermal%20properties,%20and%20density%20functional%20theory%20studies%20of%20PMMA-maghemite%20hybrid%20material&rft.jtitle=Polymer%20composites&rft.au=Rocha,%20Marcus%20V.J.&rft.date=2016-01&rft.volume=37&rft.issue=1&rft.spage=51&rft.epage=60&rft.pages=51-60&rft.issn=0272-8397&rft.eissn=1548-0569&rft.coden=PCOMDI&rft_id=info:doi/10.1002/pc.23154&rft_dat=%3Cproquest_cross%3E1800485276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757677779&rft_id=info:pmid/&rfr_iscdi=true