Extended CFD-DEM for free-surface flow with multi-size granules
Summary Computational fluid dynamics and discrete element method (CFD–DEM) is extended with the volume of fluid (VOF) method to model free‐surface flows. The fluid is described on coarse CFD grids by solving locally averaged Navier–Stokes equations, and particles are modelled individually in DEM. Fl...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2016-01, Vol.40 (1), p.62-79 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | 1 |
container_start_page | 62 |
container_title | International journal for numerical and analytical methods in geomechanics |
container_volume | 40 |
creator | Jing, L. Kwok, C. Y. Leung, Y. F. Sobral, Y. D. |
description | Summary
Computational fluid dynamics and discrete element method (CFD–DEM) is extended with the volume of fluid (VOF) method to model free‐surface flows. The fluid is described on coarse CFD grids by solving locally averaged Navier–Stokes equations, and particles are modelled individually in DEM. Fluid–particle interactions are achieved by exchanging information between DEM and CFD. An advection equation is applied to solve the phase fraction of liquid, in the spirit of VOF, to capture the dynamics of free fluid surface. It also allows inter‐phase volume replacements between the fluid and solid particles. Further, as the size ratio (SR) of fluid cell to particle diameter is limited (i.e. no less than 4) in coarse‐grid CFD–DEM, a porous sphere method is adopted to permit a wider range of particle size without sacrificing the resolution of fluid grids. It makes use of more fluid cells to calculate local porosities. The developed solver (cfdemSolverVOF) is validated in different cases. A dam break case validates the CFD‐component and VOF‐component. Particle sedimentation tests validate the CFD–DEM interaction at various Reynolds numbers. Water‐level rising tests validate the volume exchange among phases. The porous sphere model is validated in both static and dynamic situations. Sensitivity analyses show that the SR can be reduced to 1 using the porous sphere approach, with the accuracy of analyses maintained. This allows more details of the fluid phase to be revealed in the analyses and enhances the applicability of the proposed model to geotechnical problems, where a highly dynamic fluid velocity and a wide range of particle sizes are encountered. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nag.2387 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800484732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3923683761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4907-8f7175328f08aa57499bc7939b9b348eab48dc4477679d70d45f1111ed85a5cf3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs4p-CcUvHjJTJukSU4y6n4Icx5UBl5C2iazs2tn0rLNv96MiaIgvss7vA_v8b4AnIeoFyIUXVVq3oswZwegEyIRQ8EpPgQdhGMMBYrDY3Di3AIhRP20A64Hm0ZXuc6DZHgDbwZ3galtYKzW0LXWqEwHpqzXwbpoXoJlWzYFdMW7DuZWVW2p3Sk4Mqp0-uyzd8HTcPCYjOHkfnSb9CdQEYEY5IaFjOKIG8SVoowIkWZMYJGKFBOuVUp4nhHCWMxEzlBOqAl96ZxTRTODu-Byv3dl67dWu0YuC5fpslSVrlsnQ44Q4YTh6H_qj8QxZ5R4evGLLurWVv4RryijPEKCfS_MbO2c1UaubLFUditDJHehSx-63IXuKdzTdVHq7Z9OTvujn75wjd58eWVfZcwwo3I2HcnnBzqdJTGWY_wBQHOObQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757582097</pqid></control><display><type>article</type><title>Extended CFD-DEM for free-surface flow with multi-size granules</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jing, L. ; Kwok, C. Y. ; Leung, Y. F. ; Sobral, Y. D.</creator><creatorcontrib>Jing, L. ; Kwok, C. Y. ; Leung, Y. F. ; Sobral, Y. D.</creatorcontrib><description>Summary
Computational fluid dynamics and discrete element method (CFD–DEM) is extended with the volume of fluid (VOF) method to model free‐surface flows. The fluid is described on coarse CFD grids by solving locally averaged Navier–Stokes equations, and particles are modelled individually in DEM. Fluid–particle interactions are achieved by exchanging information between DEM and CFD. An advection equation is applied to solve the phase fraction of liquid, in the spirit of VOF, to capture the dynamics of free fluid surface. It also allows inter‐phase volume replacements between the fluid and solid particles. Further, as the size ratio (SR) of fluid cell to particle diameter is limited (i.e. no less than 4) in coarse‐grid CFD–DEM, a porous sphere method is adopted to permit a wider range of particle size without sacrificing the resolution of fluid grids. It makes use of more fluid cells to calculate local porosities. The developed solver (cfdemSolverVOF) is validated in different cases. A dam break case validates the CFD‐component and VOF‐component. Particle sedimentation tests validate the CFD–DEM interaction at various Reynolds numbers. Water‐level rising tests validate the volume exchange among phases. The porous sphere model is validated in both static and dynamic situations. Sensitivity analyses show that the SR can be reduced to 1 using the porous sphere approach, with the accuracy of analyses maintained. This allows more details of the fluid phase to be revealed in the analyses and enhances the applicability of the proposed model to geotechnical problems, where a highly dynamic fluid velocity and a wide range of particle sizes are encountered. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.2387</identifier><identifier>CODEN: IJNGDZ</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Computational fluid dynamics ; Discrete element method ; Dynamics ; Fluid flow ; fluid interface ; fluid-particle interaction ; Fluids ; Mathematical analysis ; Mathematical models ; Navier-Stokes equations ; three-phase flow ; volume of fluid method</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2016-01, Vol.40 (1), p.62-79</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4907-8f7175328f08aa57499bc7939b9b348eab48dc4477679d70d45f1111ed85a5cf3</citedby><cites>FETCH-LOGICAL-a4907-8f7175328f08aa57499bc7939b9b348eab48dc4477679d70d45f1111ed85a5cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.2387$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.2387$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jing, L.</creatorcontrib><creatorcontrib>Kwok, C. Y.</creatorcontrib><creatorcontrib>Leung, Y. F.</creatorcontrib><creatorcontrib>Sobral, Y. D.</creatorcontrib><title>Extended CFD-DEM for free-surface flow with multi-size granules</title><title>International journal for numerical and analytical methods in geomechanics</title><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><description>Summary
Computational fluid dynamics and discrete element method (CFD–DEM) is extended with the volume of fluid (VOF) method to model free‐surface flows. The fluid is described on coarse CFD grids by solving locally averaged Navier–Stokes equations, and particles are modelled individually in DEM. Fluid–particle interactions are achieved by exchanging information between DEM and CFD. An advection equation is applied to solve the phase fraction of liquid, in the spirit of VOF, to capture the dynamics of free fluid surface. It also allows inter‐phase volume replacements between the fluid and solid particles. Further, as the size ratio (SR) of fluid cell to particle diameter is limited (i.e. no less than 4) in coarse‐grid CFD–DEM, a porous sphere method is adopted to permit a wider range of particle size without sacrificing the resolution of fluid grids. It makes use of more fluid cells to calculate local porosities. The developed solver (cfdemSolverVOF) is validated in different cases. A dam break case validates the CFD‐component and VOF‐component. Particle sedimentation tests validate the CFD–DEM interaction at various Reynolds numbers. Water‐level rising tests validate the volume exchange among phases. The porous sphere model is validated in both static and dynamic situations. Sensitivity analyses show that the SR can be reduced to 1 using the porous sphere approach, with the accuracy of analyses maintained. This allows more details of the fluid phase to be revealed in the analyses and enhances the applicability of the proposed model to geotechnical problems, where a highly dynamic fluid velocity and a wide range of particle sizes are encountered. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>Computational fluid dynamics</subject><subject>Discrete element method</subject><subject>Dynamics</subject><subject>Fluid flow</subject><subject>fluid interface</subject><subject>fluid-particle interaction</subject><subject>Fluids</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>three-phase flow</subject><subject>volume of fluid method</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0M9LwzAUB_AgCs4p-CcUvHjJTJukSU4y6n4Icx5UBl5C2iazs2tn0rLNv96MiaIgvss7vA_v8b4AnIeoFyIUXVVq3oswZwegEyIRQ8EpPgQdhGMMBYrDY3Di3AIhRP20A64Hm0ZXuc6DZHgDbwZ3galtYKzW0LXWqEwHpqzXwbpoXoJlWzYFdMW7DuZWVW2p3Sk4Mqp0-uyzd8HTcPCYjOHkfnSb9CdQEYEY5IaFjOKIG8SVoowIkWZMYJGKFBOuVUp4nhHCWMxEzlBOqAl96ZxTRTODu-Byv3dl67dWu0YuC5fpslSVrlsnQ44Q4YTh6H_qj8QxZ5R4evGLLurWVv4RryijPEKCfS_MbO2c1UaubLFUditDJHehSx-63IXuKdzTdVHq7Z9OTvujn75wjd58eWVfZcwwo3I2HcnnBzqdJTGWY_wBQHOObQ</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Jing, L.</creator><creator>Kwok, C. Y.</creator><creator>Leung, Y. F.</creator><creator>Sobral, Y. D.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201601</creationdate><title>Extended CFD-DEM for free-surface flow with multi-size granules</title><author>Jing, L. ; Kwok, C. Y. ; Leung, Y. F. ; Sobral, Y. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4907-8f7175328f08aa57499bc7939b9b348eab48dc4477679d70d45f1111ed85a5cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational fluid dynamics</topic><topic>Discrete element method</topic><topic>Dynamics</topic><topic>Fluid flow</topic><topic>fluid interface</topic><topic>fluid-particle interaction</topic><topic>Fluids</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>three-phase flow</topic><topic>volume of fluid method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, L.</creatorcontrib><creatorcontrib>Kwok, C. Y.</creatorcontrib><creatorcontrib>Leung, Y. F.</creatorcontrib><creatorcontrib>Sobral, Y. D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, L.</au><au>Kwok, C. Y.</au><au>Leung, Y. F.</au><au>Sobral, Y. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended CFD-DEM for free-surface flow with multi-size granules</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><date>2016-01</date><risdate>2016</risdate><volume>40</volume><issue>1</issue><spage>62</spage><epage>79</epage><pages>62-79</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><coden>IJNGDZ</coden><abstract>Summary
Computational fluid dynamics and discrete element method (CFD–DEM) is extended with the volume of fluid (VOF) method to model free‐surface flows. The fluid is described on coarse CFD grids by solving locally averaged Navier–Stokes equations, and particles are modelled individually in DEM. Fluid–particle interactions are achieved by exchanging information between DEM and CFD. An advection equation is applied to solve the phase fraction of liquid, in the spirit of VOF, to capture the dynamics of free fluid surface. It also allows inter‐phase volume replacements between the fluid and solid particles. Further, as the size ratio (SR) of fluid cell to particle diameter is limited (i.e. no less than 4) in coarse‐grid CFD–DEM, a porous sphere method is adopted to permit a wider range of particle size without sacrificing the resolution of fluid grids. It makes use of more fluid cells to calculate local porosities. The developed solver (cfdemSolverVOF) is validated in different cases. A dam break case validates the CFD‐component and VOF‐component. Particle sedimentation tests validate the CFD–DEM interaction at various Reynolds numbers. Water‐level rising tests validate the volume exchange among phases. The porous sphere model is validated in both static and dynamic situations. Sensitivity analyses show that the SR can be reduced to 1 using the porous sphere approach, with the accuracy of analyses maintained. This allows more details of the fluid phase to be revealed in the analyses and enhances the applicability of the proposed model to geotechnical problems, where a highly dynamic fluid velocity and a wide range of particle sizes are encountered. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nag.2387</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9061 |
ispartof | International journal for numerical and analytical methods in geomechanics, 2016-01, Vol.40 (1), p.62-79 |
issn | 0363-9061 1096-9853 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800484732 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Computational fluid dynamics Discrete element method Dynamics Fluid flow fluid interface fluid-particle interaction Fluids Mathematical analysis Mathematical models Navier-Stokes equations three-phase flow volume of fluid method |
title | Extended CFD-DEM for free-surface flow with multi-size granules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20CFD-DEM%20for%20free-surface%20flow%20with%20multi-size%20granules&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Jing,%20L.&rft.date=2016-01&rft.volume=40&rft.issue=1&rft.spage=62&rft.epage=79&rft.pages=62-79&rft.issn=0363-9061&rft.eissn=1096-9853&rft.coden=IJNGDZ&rft_id=info:doi/10.1002/nag.2387&rft_dat=%3Cproquest_cross%3E3923683761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757582097&rft_id=info:pmid/&rfr_iscdi=true |