Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond‐shaped insulating posts

Ribonuclease A (RNase A) has proven potential as a therapeutic agent, especially in its PEGylated form. Grafting of PEG molecules to this protein yields mono‐PEGylated (mono‐PEG) and di‐PEGylated (di‐PEG) RNase A conjugates, and the unreacted protein. Mono‐PEG RNase A is of great interest. The use o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2016-02, Vol.37 (3), p.519-528
Hauptverfasser: Mata‐Gómez, Marco A, Gallo‐Villanueva, Roberto C, González‐Valdez, José, Martínez‐Chapa, Sergio O, Rito‐Palomares, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528
container_issue 3
container_start_page 519
container_title Electrophoresis
container_volume 37
creator Mata‐Gómez, Marco A
Gallo‐Villanueva, Roberto C
González‐Valdez, José
Martínez‐Chapa, Sergio O
Rito‐Palomares, Marco
description Ribonuclease A (RNase A) has proven potential as a therapeutic agent, especially in its PEGylated form. Grafting of PEG molecules to this protein yields mono‐PEGylated (mono‐PEG) and di‐PEGylated (di‐PEG) RNase A conjugates, and the unreacted protein. Mono‐PEG RNase A is of great interest. The use of electrokinetic forces in microdevices represents a novel alternative to chromatographic methods to separate this specie. This work describes the dielectrophoretic behavior of the main protein products of the RNase A PEGylation inside a microchannel with insulators under direct current electric fields. This approach represents the first step in route to design micro‐bioprocesses to separate PEGylated RNase A from unreacted native protein. The three proteins exhibited different dielectrophoretic behaviors. All of them experienced a marked streaming pattern at 3000 V consistent with positive dielectrophoresis. Native protein was not captured at any of the conditions tested, while mono‐PEG RNase A and di‐PEG RNase A were captured presumably due to positive dielectrophoresis at 4000 and 2500 V, respectively. Concentration of mono‐PEG RNase A with a maximal enrichment efficiency of ≈9.6 times the feed concentration was achieved in few seconds. These findings open the possibility of designing novel devices for rapid separation, concentration, and recovery of PEGylated RNase A in a one‐step operation.
doi_str_mv 10.1002/elps.201500311
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800484152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762342938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4350-9b82af019b55b19988e49e0c974ccd59af1a67cce0a82c9ab9abf821c9e3aea73</originalsourceid><addsrcrecordid>eNqFkk9v0zAchi0EYmVw5Qg-cknx38Q-TqMUpKpMlImj5Ti_LIY0DnbK6I2PwGfkk-Apo9dJlnx5nlfy-xqhl5QsKSHsLfRjWjJCJSGc0kdoQSVjBSsVf4wWhFa8IIrLM_QspW-EEKGFeIrOWCl5tsUC9e889OCmGMYuRJi8wzV09qcPEYcWX63Wx95O0ODPW5sAX2A_JN8AtnjvXQyus8MAPb71U4cbb_dhaP7-_pM6O2Yns4ds--EGjyFN6Tl60to-wYv7-xxdv199ufxQbD6tP15ebAonuCSFrhWzLaG6lrKmWisFQgNxuhLONVLbltqycg6IVcxpW-fTKkadBm7BVvwcvZlzxxh-HCBNZu-Tg763A4RDMlTlJpTIVT2MViXjgmmuMrqc0fzulCK0Zox-b-PRUGLuxjB3Y5jTGFl4dZ99qPfQnPD_7WdAzMCt7-H4QJxZba52stQka8Ws-TTBr5Nm43dTVryS5ut2bdZaVnq3Lc02869nvrXB2Jvok7ne5dwyf4hSV0Twf4F5r6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762342938</pqid></control><display><type>article</type><title>Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond‐shaped insulating posts</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Mata‐Gómez, Marco A ; Gallo‐Villanueva, Roberto C ; González‐Valdez, José ; Martínez‐Chapa, Sergio O ; Rito‐Palomares, Marco</creator><creatorcontrib>Mata‐Gómez, Marco A ; Gallo‐Villanueva, Roberto C ; González‐Valdez, José ; Martínez‐Chapa, Sergio O ; Rito‐Palomares, Marco</creatorcontrib><description>Ribonuclease A (RNase A) has proven potential as a therapeutic agent, especially in its PEGylated form. Grafting of PEG molecules to this protein yields mono‐PEGylated (mono‐PEG) and di‐PEGylated (di‐PEG) RNase A conjugates, and the unreacted protein. Mono‐PEG RNase A is of great interest. The use of electrokinetic forces in microdevices represents a novel alternative to chromatographic methods to separate this specie. This work describes the dielectrophoretic behavior of the main protein products of the RNase A PEGylation inside a microchannel with insulators under direct current electric fields. This approach represents the first step in route to design micro‐bioprocesses to separate PEGylated RNase A from unreacted native protein. The three proteins exhibited different dielectrophoretic behaviors. All of them experienced a marked streaming pattern at 3000 V consistent with positive dielectrophoresis. Native protein was not captured at any of the conditions tested, while mono‐PEG RNase A and di‐PEG RNase A were captured presumably due to positive dielectrophoresis at 4000 and 2500 V, respectively. Concentration of mono‐PEG RNase A with a maximal enrichment efficiency of ≈9.6 times the feed concentration was achieved in few seconds. These findings open the possibility of designing novel devices for rapid separation, concentration, and recovery of PEGylated RNase A in a one‐step operation.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201500311</identifier><identifier>PMID: 26530024</identifier><language>eng</language><publisher>Germany: Verlag Chemie</publisher><subject>Animals ; Cattle ; chemical bonding ; chromatography ; Computer Simulation ; Devices ; Diamond ; Dielectrophoresis ; Direct current ; electric current ; electric field ; Electric fields ; Electrophoresis ; Electrophoresis - instrumentation ; Electrophoresis - methods ; Enrichment ; Microchannel ; Microchannels ; Microfluidic Analytical Techniques - instrumentation ; Microfluidic Analytical Techniques - methods ; Microfluidics ; PEGylation ; Polyethylene Glycols - chemistry ; protein products ; Proteins ; Ribonuclease A ; Ribonuclease, Pancreatic - chemistry ; ribonucleases ; technology</subject><ispartof>Electrophoresis, 2016-02, Vol.37 (3), p.519-528</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4350-9b82af019b55b19988e49e0c974ccd59af1a67cce0a82c9ab9abf821c9e3aea73</citedby><cites>FETCH-LOGICAL-c4350-9b82af019b55b19988e49e0c974ccd59af1a67cce0a82c9ab9abf821c9e3aea73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201500311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201500311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26530024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mata‐Gómez, Marco A</creatorcontrib><creatorcontrib>Gallo‐Villanueva, Roberto C</creatorcontrib><creatorcontrib>González‐Valdez, José</creatorcontrib><creatorcontrib>Martínez‐Chapa, Sergio O</creatorcontrib><creatorcontrib>Rito‐Palomares, Marco</creatorcontrib><title>Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond‐shaped insulating posts</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>Ribonuclease A (RNase A) has proven potential as a therapeutic agent, especially in its PEGylated form. Grafting of PEG molecules to this protein yields mono‐PEGylated (mono‐PEG) and di‐PEGylated (di‐PEG) RNase A conjugates, and the unreacted protein. Mono‐PEG RNase A is of great interest. The use of electrokinetic forces in microdevices represents a novel alternative to chromatographic methods to separate this specie. This work describes the dielectrophoretic behavior of the main protein products of the RNase A PEGylation inside a microchannel with insulators under direct current electric fields. This approach represents the first step in route to design micro‐bioprocesses to separate PEGylated RNase A from unreacted native protein. The three proteins exhibited different dielectrophoretic behaviors. All of them experienced a marked streaming pattern at 3000 V consistent with positive dielectrophoresis. Native protein was not captured at any of the conditions tested, while mono‐PEG RNase A and di‐PEG RNase A were captured presumably due to positive dielectrophoresis at 4000 and 2500 V, respectively. Concentration of mono‐PEG RNase A with a maximal enrichment efficiency of ≈9.6 times the feed concentration was achieved in few seconds. These findings open the possibility of designing novel devices for rapid separation, concentration, and recovery of PEGylated RNase A in a one‐step operation.</description><subject>Animals</subject><subject>Cattle</subject><subject>chemical bonding</subject><subject>chromatography</subject><subject>Computer Simulation</subject><subject>Devices</subject><subject>Diamond</subject><subject>Dielectrophoresis</subject><subject>Direct current</subject><subject>electric current</subject><subject>electric field</subject><subject>Electric fields</subject><subject>Electrophoresis</subject><subject>Electrophoresis - instrumentation</subject><subject>Electrophoresis - methods</subject><subject>Enrichment</subject><subject>Microchannel</subject><subject>Microchannels</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>PEGylation</subject><subject>Polyethylene Glycols - chemistry</subject><subject>protein products</subject><subject>Proteins</subject><subject>Ribonuclease A</subject><subject>Ribonuclease, Pancreatic - chemistry</subject><subject>ribonucleases</subject><subject>technology</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk9v0zAchi0EYmVw5Qg-cknx38Q-TqMUpKpMlImj5Ti_LIY0DnbK6I2PwGfkk-Apo9dJlnx5nlfy-xqhl5QsKSHsLfRjWjJCJSGc0kdoQSVjBSsVf4wWhFa8IIrLM_QspW-EEKGFeIrOWCl5tsUC9e889OCmGMYuRJi8wzV09qcPEYcWX63Wx95O0ODPW5sAX2A_JN8AtnjvXQyus8MAPb71U4cbb_dhaP7-_pM6O2Yns4ds--EGjyFN6Tl60to-wYv7-xxdv199ufxQbD6tP15ebAonuCSFrhWzLaG6lrKmWisFQgNxuhLONVLbltqycg6IVcxpW-fTKkadBm7BVvwcvZlzxxh-HCBNZu-Tg763A4RDMlTlJpTIVT2MViXjgmmuMrqc0fzulCK0Zox-b-PRUGLuxjB3Y5jTGFl4dZ99qPfQnPD_7WdAzMCt7-H4QJxZba52stQka8Ws-TTBr5Nm43dTVryS5ut2bdZaVnq3Lc02869nvrXB2Jvok7ne5dwyf4hSV0Twf4F5r6k</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Mata‐Gómez, Marco A</creator><creator>Gallo‐Villanueva, Roberto C</creator><creator>González‐Valdez, José</creator><creator>Martínez‐Chapa, Sergio O</creator><creator>Rito‐Palomares, Marco</creator><general>Verlag Chemie</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201602</creationdate><title>Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond‐shaped insulating posts</title><author>Mata‐Gómez, Marco A ; Gallo‐Villanueva, Roberto C ; González‐Valdez, José ; Martínez‐Chapa, Sergio O ; Rito‐Palomares, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4350-9b82af019b55b19988e49e0c974ccd59af1a67cce0a82c9ab9abf821c9e3aea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cattle</topic><topic>chemical bonding</topic><topic>chromatography</topic><topic>Computer Simulation</topic><topic>Devices</topic><topic>Diamond</topic><topic>Dielectrophoresis</topic><topic>Direct current</topic><topic>electric current</topic><topic>electric field</topic><topic>Electric fields</topic><topic>Electrophoresis</topic><topic>Electrophoresis - instrumentation</topic><topic>Electrophoresis - methods</topic><topic>Enrichment</topic><topic>Microchannel</topic><topic>Microchannels</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>PEGylation</topic><topic>Polyethylene Glycols - chemistry</topic><topic>protein products</topic><topic>Proteins</topic><topic>Ribonuclease A</topic><topic>Ribonuclease, Pancreatic - chemistry</topic><topic>ribonucleases</topic><topic>technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mata‐Gómez, Marco A</creatorcontrib><creatorcontrib>Gallo‐Villanueva, Roberto C</creatorcontrib><creatorcontrib>González‐Valdez, José</creatorcontrib><creatorcontrib>Martínez‐Chapa, Sergio O</creatorcontrib><creatorcontrib>Rito‐Palomares, Marco</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mata‐Gómez, Marco A</au><au>Gallo‐Villanueva, Roberto C</au><au>González‐Valdez, José</au><au>Martínez‐Chapa, Sergio O</au><au>Rito‐Palomares, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond‐shaped insulating posts</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2016-02</date><risdate>2016</risdate><volume>37</volume><issue>3</issue><spage>519</spage><epage>528</epage><pages>519-528</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Ribonuclease A (RNase A) has proven potential as a therapeutic agent, especially in its PEGylated form. Grafting of PEG molecules to this protein yields mono‐PEGylated (mono‐PEG) and di‐PEGylated (di‐PEG) RNase A conjugates, and the unreacted protein. Mono‐PEG RNase A is of great interest. The use of electrokinetic forces in microdevices represents a novel alternative to chromatographic methods to separate this specie. This work describes the dielectrophoretic behavior of the main protein products of the RNase A PEGylation inside a microchannel with insulators under direct current electric fields. This approach represents the first step in route to design micro‐bioprocesses to separate PEGylated RNase A from unreacted native protein. The three proteins exhibited different dielectrophoretic behaviors. All of them experienced a marked streaming pattern at 3000 V consistent with positive dielectrophoresis. Native protein was not captured at any of the conditions tested, while mono‐PEG RNase A and di‐PEG RNase A were captured presumably due to positive dielectrophoresis at 4000 and 2500 V, respectively. Concentration of mono‐PEG RNase A with a maximal enrichment efficiency of ≈9.6 times the feed concentration was achieved in few seconds. These findings open the possibility of designing novel devices for rapid separation, concentration, and recovery of PEGylated RNase A in a one‐step operation.</abstract><cop>Germany</cop><pub>Verlag Chemie</pub><pmid>26530024</pmid><doi>10.1002/elps.201500311</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2016-02, Vol.37 (3), p.519-528
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_1800484152
source MEDLINE; Wiley Journals
subjects Animals
Cattle
chemical bonding
chromatography
Computer Simulation
Devices
Diamond
Dielectrophoresis
Direct current
electric current
electric field
Electric fields
Electrophoresis
Electrophoresis - instrumentation
Electrophoresis - methods
Enrichment
Microchannel
Microchannels
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Microfluidics
PEGylation
Polyethylene Glycols - chemistry
protein products
Proteins
Ribonuclease A
Ribonuclease, Pancreatic - chemistry
ribonucleases
technology
title Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond‐shaped insulating posts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectrophoretic%20behavior%20of%20PEGylated%20RNase%20A%20inside%20a%20microchannel%20with%20diamond%E2%80%90shaped%20insulating%20posts&rft.jtitle=Electrophoresis&rft.au=Mata%E2%80%90G%C3%B3mez,%20Marco%20A&rft.date=2016-02&rft.volume=37&rft.issue=3&rft.spage=519&rft.epage=528&rft.pages=519-528&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201500311&rft_dat=%3Cproquest_cross%3E1762342938%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762342938&rft_id=info:pmid/26530024&rfr_iscdi=true