Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis
Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite‐based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2016-02, Vol.121 (3), p.1208-1219 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1219 |
---|---|
container_issue | 3 |
container_start_page | 1208 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 121 |
creator | Gruber, A. Su, C.‐H. Crow, W. T. Zwieback, S. Dorigo, W. A. Wagner, W. |
description | Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite‐based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified data set. However, this requires an appropriate parameterization of the error structures of the underlying data sets. While triple collocation (TC) analysis has been widely recognized as a powerful tool for estimating random error variances of coarse‐resolution soil moisture data sets, the estimation of error cross covariances remains an unresolved challenge. Here we propose a method—referred to as extended collocation (EC) analysis—for estimating error cross‐correlations by generalizing the TC method to an arbitrary number of data sets and relaxing the therein made assumption of zero error cross‐correlation for certain data set combinations. A synthetic experiment shows that EC analysis is able to reliably recover true error cross‐correlation levels. Applied to real soil moisture retrievals from Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) C‐band and X‐band observations together with advanced scatterometer (ASCAT) retrievals, modeled data from Global Land Data Assimilation System (GLDAS)‐Noah and in situ measurements drawn from the International Soil Moisture Network, EC yields reasonable and strong nonzero error cross‐correlations between the two AMSR‐E products. Against expectation, nonzero error cross‐correlations are also found between ASCAT and AMSR‐E. We conclude that the proposed EC method represents an important step toward a fully parameterized error covariance matrix for coarse‐resolution soil moisture data sets, which is vital for any rigorous data assimilation framework or data merging scheme.
Key Points
Triple collocation analysis is extended to an arbitrary number of data sets
Extended collocation analysis allows for the estimation of error cross‐correlations
The method is evaluated using synthetic and real data |
doi_str_mv | 10.1002/2015JD024027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800483228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776664277</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4340-34a0c01d5e1c45eb809040f0e09152e014c66b61884dfbb89140d1f0bb8705003</originalsourceid><addsrcrecordid>eNqF0cFKAzEQANAgCpbamx8Q8OLB1Uk2m2SP0tZqKQii4G1Jd7OyJd3UzC7am5_gN_olblsR8aC5zMC8CcwMIccMzhkAv-DAkukIuACu9kiPM5lGOk3l_neuHg_JAHEB3dMQi0T0SDHGplqapqqfqA3BB5oHj_jx9p77EKzrKr5GWtUUfeXo0lfYtMHSwjSGom2QtrjtfW1sXdiC5t45n2_bqKmNW2OFR-SgNA7t4Cv2ycPV-H54Hc1uJzfDy1lkRCwgioWBHFiRWJaLxM41pCCgBAspS7gFJnIp55JpLYpyPtcpE1CwErpUQQIQ98np7t9V8M-txSZbVphb50xtfYsZ0wBCx5zr_6lSUkrBleroyS-68G3oRtsoqRnjXPFOne3Udn_BltkqdIsN64xBtjlQ9vNAHY93_KVydv2nzaaTu1HClYD4E-c9kZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768112272</pqid></control><display><type>article</type><title>Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis</title><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><source>Alma/SFX Local Collection</source><creator>Gruber, A. ; Su, C.‐H. ; Crow, W. T. ; Zwieback, S. ; Dorigo, W. A. ; Wagner, W.</creator><creatorcontrib>Gruber, A. ; Su, C.‐H. ; Crow, W. T. ; Zwieback, S. ; Dorigo, W. A. ; Wagner, W.</creatorcontrib><description>Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite‐based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified data set. However, this requires an appropriate parameterization of the error structures of the underlying data sets. While triple collocation (TC) analysis has been widely recognized as a powerful tool for estimating random error variances of coarse‐resolution soil moisture data sets, the estimation of error cross covariances remains an unresolved challenge. Here we propose a method—referred to as extended collocation (EC) analysis—for estimating error cross‐correlations by generalizing the TC method to an arbitrary number of data sets and relaxing the therein made assumption of zero error cross‐correlation for certain data set combinations. A synthetic experiment shows that EC analysis is able to reliably recover true error cross‐correlation levels. Applied to real soil moisture retrievals from Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) C‐band and X‐band observations together with advanced scatterometer (ASCAT) retrievals, modeled data from Global Land Data Assimilation System (GLDAS)‐Noah and in situ measurements drawn from the International Soil Moisture Network, EC yields reasonable and strong nonzero error cross‐correlations between the two AMSR‐E products. Against expectation, nonzero error cross‐correlations are also found between ASCAT and AMSR‐E. We conclude that the proposed EC method represents an important step toward a fully parameterized error covariance matrix for coarse‐resolution soil moisture data sets, which is vital for any rigorous data assimilation framework or data merging scheme.
Key Points
Triple collocation analysis is extended to an arbitrary number of data sets
Extended collocation analysis allows for the estimation of error cross‐correlations
The method is evaluated using synthetic and real data</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2015JD024027</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Collocation ; Data assimilation ; Data collection ; Datasets ; Error analysis ; error characterization ; error cross‐correlation ; Estimating ; Geophysics ; In situ measurement ; Permissible error ; Retrieval ; Soil moisture ; triple collocation ; validation ; Vegetation ; Water balance</subject><ispartof>Journal of geophysical research. Atmospheres, 2016-02, Vol.121 (3), p.1208-1219</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4340-34a0c01d5e1c45eb809040f0e09152e014c66b61884dfbb89140d1f0bb8705003</citedby><cites>FETCH-LOGICAL-a4340-34a0c01d5e1c45eb809040f0e09152e014c66b61884dfbb89140d1f0bb8705003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JD024027$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JD024027$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,27933,27934,45583,45584,46418,46842</link.rule.ids></links><search><creatorcontrib>Gruber, A.</creatorcontrib><creatorcontrib>Su, C.‐H.</creatorcontrib><creatorcontrib>Crow, W. T.</creatorcontrib><creatorcontrib>Zwieback, S.</creatorcontrib><creatorcontrib>Dorigo, W. A.</creatorcontrib><creatorcontrib>Wagner, W.</creatorcontrib><title>Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis</title><title>Journal of geophysical research. Atmospheres</title><description>Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite‐based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified data set. However, this requires an appropriate parameterization of the error structures of the underlying data sets. While triple collocation (TC) analysis has been widely recognized as a powerful tool for estimating random error variances of coarse‐resolution soil moisture data sets, the estimation of error cross covariances remains an unresolved challenge. Here we propose a method—referred to as extended collocation (EC) analysis—for estimating error cross‐correlations by generalizing the TC method to an arbitrary number of data sets and relaxing the therein made assumption of zero error cross‐correlation for certain data set combinations. A synthetic experiment shows that EC analysis is able to reliably recover true error cross‐correlation levels. Applied to real soil moisture retrievals from Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) C‐band and X‐band observations together with advanced scatterometer (ASCAT) retrievals, modeled data from Global Land Data Assimilation System (GLDAS)‐Noah and in situ measurements drawn from the International Soil Moisture Network, EC yields reasonable and strong nonzero error cross‐correlations between the two AMSR‐E products. Against expectation, nonzero error cross‐correlations are also found between ASCAT and AMSR‐E. We conclude that the proposed EC method represents an important step toward a fully parameterized error covariance matrix for coarse‐resolution soil moisture data sets, which is vital for any rigorous data assimilation framework or data merging scheme.
Key Points
Triple collocation analysis is extended to an arbitrary number of data sets
Extended collocation analysis allows for the estimation of error cross‐correlations
The method is evaluated using synthetic and real data</description><subject>Collocation</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Error analysis</subject><subject>error characterization</subject><subject>error cross‐correlation</subject><subject>Estimating</subject><subject>Geophysics</subject><subject>In situ measurement</subject><subject>Permissible error</subject><subject>Retrieval</subject><subject>Soil moisture</subject><subject>triple collocation</subject><subject>validation</subject><subject>Vegetation</subject><subject>Water balance</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0cFKAzEQANAgCpbamx8Q8OLB1Uk2m2SP0tZqKQii4G1Jd7OyJd3UzC7am5_gN_olblsR8aC5zMC8CcwMIccMzhkAv-DAkukIuACu9kiPM5lGOk3l_neuHg_JAHEB3dMQi0T0SDHGplqapqqfqA3BB5oHj_jx9p77EKzrKr5GWtUUfeXo0lfYtMHSwjSGom2QtrjtfW1sXdiC5t45n2_bqKmNW2OFR-SgNA7t4Cv2ycPV-H54Hc1uJzfDy1lkRCwgioWBHFiRWJaLxM41pCCgBAspS7gFJnIp55JpLYpyPtcpE1CwErpUQQIQ98np7t9V8M-txSZbVphb50xtfYsZ0wBCx5zr_6lSUkrBleroyS-68G3oRtsoqRnjXPFOne3Udn_BltkqdIsN64xBtjlQ9vNAHY93_KVydv2nzaaTu1HClYD4E-c9kZk</recordid><startdate>20160216</startdate><enddate>20160216</enddate><creator>Gruber, A.</creator><creator>Su, C.‐H.</creator><creator>Crow, W. T.</creator><creator>Zwieback, S.</creator><creator>Dorigo, W. A.</creator><creator>Wagner, W.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20160216</creationdate><title>Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis</title><author>Gruber, A. ; Su, C.‐H. ; Crow, W. T. ; Zwieback, S. ; Dorigo, W. A. ; Wagner, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4340-34a0c01d5e1c45eb809040f0e09152e014c66b61884dfbb89140d1f0bb8705003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Collocation</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Error analysis</topic><topic>error characterization</topic><topic>error cross‐correlation</topic><topic>Estimating</topic><topic>Geophysics</topic><topic>In situ measurement</topic><topic>Permissible error</topic><topic>Retrieval</topic><topic>Soil moisture</topic><topic>triple collocation</topic><topic>validation</topic><topic>Vegetation</topic><topic>Water balance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruber, A.</creatorcontrib><creatorcontrib>Su, C.‐H.</creatorcontrib><creatorcontrib>Crow, W. T.</creatorcontrib><creatorcontrib>Zwieback, S.</creatorcontrib><creatorcontrib>Dorigo, W. A.</creatorcontrib><creatorcontrib>Wagner, W.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruber, A.</au><au>Su, C.‐H.</au><au>Crow, W. T.</au><au>Zwieback, S.</au><au>Dorigo, W. A.</au><au>Wagner, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2016-02-16</date><risdate>2016</risdate><volume>121</volume><issue>3</issue><spage>1208</spage><epage>1219</epage><pages>1208-1219</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite‐based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified data set. However, this requires an appropriate parameterization of the error structures of the underlying data sets. While triple collocation (TC) analysis has been widely recognized as a powerful tool for estimating random error variances of coarse‐resolution soil moisture data sets, the estimation of error cross covariances remains an unresolved challenge. Here we propose a method—referred to as extended collocation (EC) analysis—for estimating error cross‐correlations by generalizing the TC method to an arbitrary number of data sets and relaxing the therein made assumption of zero error cross‐correlation for certain data set combinations. A synthetic experiment shows that EC analysis is able to reliably recover true error cross‐correlation levels. Applied to real soil moisture retrievals from Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) C‐band and X‐band observations together with advanced scatterometer (ASCAT) retrievals, modeled data from Global Land Data Assimilation System (GLDAS)‐Noah and in situ measurements drawn from the International Soil Moisture Network, EC yields reasonable and strong nonzero error cross‐correlations between the two AMSR‐E products. Against expectation, nonzero error cross‐correlations are also found between ASCAT and AMSR‐E. We conclude that the proposed EC method represents an important step toward a fully parameterized error covariance matrix for coarse‐resolution soil moisture data sets, which is vital for any rigorous data assimilation framework or data merging scheme.
Key Points
Triple collocation analysis is extended to an arbitrary number of data sets
Extended collocation analysis allows for the estimation of error cross‐correlations
The method is evaluated using synthetic and real data</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JD024027</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2016-02, Vol.121 (3), p.1208-1219 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800483228 |
source | Access via Wiley Online Library; Wiley Free Content; Alma/SFX Local Collection |
subjects | Collocation Data assimilation Data collection Datasets Error analysis error characterization error cross‐correlation Estimating Geophysics In situ measurement Permissible error Retrieval Soil moisture triple collocation validation Vegetation Water balance |
title | Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T04%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20error%20cross%E2%80%90correlations%20in%20soil%20moisture%20data%20sets%20using%20extended%20collocation%20analysis&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Gruber,%20A.&rft.date=2016-02-16&rft.volume=121&rft.issue=3&rft.spage=1208&rft.epage=1219&rft.pages=1208-1219&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2015JD024027&rft_dat=%3Cproquest_cross%3E1776664277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768112272&rft_id=info:pmid/&rfr_iscdi=true |