Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis

Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite‐based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2016-02, Vol.121 (3), p.1208-1219
Hauptverfasser: Gruber, A., Su, C.‐H., Crow, W. T., Zwieback, S., Dorigo, W. A., Wagner, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1219
container_issue 3
container_start_page 1208
container_title Journal of geophysical research. Atmospheres
container_volume 121
creator Gruber, A.
Su, C.‐H.
Crow, W. T.
Zwieback, S.
Dorigo, W. A.
Wagner, W.
description Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite‐based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified data set. However, this requires an appropriate parameterization of the error structures of the underlying data sets. While triple collocation (TC) analysis has been widely recognized as a powerful tool for estimating random error variances of coarse‐resolution soil moisture data sets, the estimation of error cross covariances remains an unresolved challenge. Here we propose a method—referred to as extended collocation (EC) analysis—for estimating error cross‐correlations by generalizing the TC method to an arbitrary number of data sets and relaxing the therein made assumption of zero error cross‐correlation for certain data set combinations. A synthetic experiment shows that EC analysis is able to reliably recover true error cross‐correlation levels. Applied to real soil moisture retrievals from Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) C‐band and X‐band observations together with advanced scatterometer (ASCAT) retrievals, modeled data from Global Land Data Assimilation System (GLDAS)‐Noah and in situ measurements drawn from the International Soil Moisture Network, EC yields reasonable and strong nonzero error cross‐correlations between the two AMSR‐E products. Against expectation, nonzero error cross‐correlations are also found between ASCAT and AMSR‐E. We conclude that the proposed EC method represents an important step toward a fully parameterized error covariance matrix for coarse‐resolution soil moisture data sets, which is vital for any rigorous data assimilation framework or data merging scheme. Key Points Triple collocation analysis is extended to an arbitrary number of data sets Extended collocation analysis allows for the estimation of error cross‐correlations The method is evaluated using synthetic and real data
doi_str_mv 10.1002/2015JD024027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800483228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776664277</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4340-34a0c01d5e1c45eb809040f0e09152e014c66b61884dfbb89140d1f0bb8705003</originalsourceid><addsrcrecordid>eNqF0cFKAzEQANAgCpbamx8Q8OLB1Uk2m2SP0tZqKQii4G1Jd7OyJd3UzC7am5_gN_olblsR8aC5zMC8CcwMIccMzhkAv-DAkukIuACu9kiPM5lGOk3l_neuHg_JAHEB3dMQi0T0SDHGplqapqqfqA3BB5oHj_jx9p77EKzrKr5GWtUUfeXo0lfYtMHSwjSGom2QtrjtfW1sXdiC5t45n2_bqKmNW2OFR-SgNA7t4Cv2ycPV-H54Hc1uJzfDy1lkRCwgioWBHFiRWJaLxM41pCCgBAspS7gFJnIp55JpLYpyPtcpE1CwErpUQQIQ98np7t9V8M-txSZbVphb50xtfYsZ0wBCx5zr_6lSUkrBleroyS-68G3oRtsoqRnjXPFOne3Udn_BltkqdIsN64xBtjlQ9vNAHY93_KVydv2nzaaTu1HClYD4E-c9kZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1768112272</pqid></control><display><type>article</type><title>Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis</title><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><source>Alma/SFX Local Collection</source><creator>Gruber, A. ; Su, C.‐H. ; Crow, W. T. ; Zwieback, S. ; Dorigo, W. A. ; Wagner, W.</creator><creatorcontrib>Gruber, A. ; Su, C.‐H. ; Crow, W. T. ; Zwieback, S. ; Dorigo, W. A. ; Wagner, W.</creatorcontrib><description>Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite‐based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified data set. However, this requires an appropriate parameterization of the error structures of the underlying data sets. While triple collocation (TC) analysis has been widely recognized as a powerful tool for estimating random error variances of coarse‐resolution soil moisture data sets, the estimation of error cross covariances remains an unresolved challenge. Here we propose a method—referred to as extended collocation (EC) analysis—for estimating error cross‐correlations by generalizing the TC method to an arbitrary number of data sets and relaxing the therein made assumption of zero error cross‐correlation for certain data set combinations. A synthetic experiment shows that EC analysis is able to reliably recover true error cross‐correlation levels. Applied to real soil moisture retrievals from Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) C‐band and X‐band observations together with advanced scatterometer (ASCAT) retrievals, modeled data from Global Land Data Assimilation System (GLDAS)‐Noah and in situ measurements drawn from the International Soil Moisture Network, EC yields reasonable and strong nonzero error cross‐correlations between the two AMSR‐E products. Against expectation, nonzero error cross‐correlations are also found between ASCAT and AMSR‐E. We conclude that the proposed EC method represents an important step toward a fully parameterized error covariance matrix for coarse‐resolution soil moisture data sets, which is vital for any rigorous data assimilation framework or data merging scheme. Key Points Triple collocation analysis is extended to an arbitrary number of data sets Extended collocation analysis allows for the estimation of error cross‐correlations The method is evaluated using synthetic and real data</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2015JD024027</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Collocation ; Data assimilation ; Data collection ; Datasets ; Error analysis ; error characterization ; error cross‐correlation ; Estimating ; Geophysics ; In situ measurement ; Permissible error ; Retrieval ; Soil moisture ; triple collocation ; validation ; Vegetation ; Water balance</subject><ispartof>Journal of geophysical research. Atmospheres, 2016-02, Vol.121 (3), p.1208-1219</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4340-34a0c01d5e1c45eb809040f0e09152e014c66b61884dfbb89140d1f0bb8705003</citedby><cites>FETCH-LOGICAL-a4340-34a0c01d5e1c45eb809040f0e09152e014c66b61884dfbb89140d1f0bb8705003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JD024027$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JD024027$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,27933,27934,45583,45584,46418,46842</link.rule.ids></links><search><creatorcontrib>Gruber, A.</creatorcontrib><creatorcontrib>Su, C.‐H.</creatorcontrib><creatorcontrib>Crow, W. T.</creatorcontrib><creatorcontrib>Zwieback, S.</creatorcontrib><creatorcontrib>Dorigo, W. A.</creatorcontrib><creatorcontrib>Wagner, W.</creatorcontrib><title>Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis</title><title>Journal of geophysical research. Atmospheres</title><description>Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite‐based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified data set. However, this requires an appropriate parameterization of the error structures of the underlying data sets. While triple collocation (TC) analysis has been widely recognized as a powerful tool for estimating random error variances of coarse‐resolution soil moisture data sets, the estimation of error cross covariances remains an unresolved challenge. Here we propose a method—referred to as extended collocation (EC) analysis—for estimating error cross‐correlations by generalizing the TC method to an arbitrary number of data sets and relaxing the therein made assumption of zero error cross‐correlation for certain data set combinations. A synthetic experiment shows that EC analysis is able to reliably recover true error cross‐correlation levels. Applied to real soil moisture retrievals from Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) C‐band and X‐band observations together with advanced scatterometer (ASCAT) retrievals, modeled data from Global Land Data Assimilation System (GLDAS)‐Noah and in situ measurements drawn from the International Soil Moisture Network, EC yields reasonable and strong nonzero error cross‐correlations between the two AMSR‐E products. Against expectation, nonzero error cross‐correlations are also found between ASCAT and AMSR‐E. We conclude that the proposed EC method represents an important step toward a fully parameterized error covariance matrix for coarse‐resolution soil moisture data sets, which is vital for any rigorous data assimilation framework or data merging scheme. Key Points Triple collocation analysis is extended to an arbitrary number of data sets Extended collocation analysis allows for the estimation of error cross‐correlations The method is evaluated using synthetic and real data</description><subject>Collocation</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Error analysis</subject><subject>error characterization</subject><subject>error cross‐correlation</subject><subject>Estimating</subject><subject>Geophysics</subject><subject>In situ measurement</subject><subject>Permissible error</subject><subject>Retrieval</subject><subject>Soil moisture</subject><subject>triple collocation</subject><subject>validation</subject><subject>Vegetation</subject><subject>Water balance</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0cFKAzEQANAgCpbamx8Q8OLB1Uk2m2SP0tZqKQii4G1Jd7OyJd3UzC7am5_gN_olblsR8aC5zMC8CcwMIccMzhkAv-DAkukIuACu9kiPM5lGOk3l_neuHg_JAHEB3dMQi0T0SDHGplqapqqfqA3BB5oHj_jx9p77EKzrKr5GWtUUfeXo0lfYtMHSwjSGom2QtrjtfW1sXdiC5t45n2_bqKmNW2OFR-SgNA7t4Cv2ycPV-H54Hc1uJzfDy1lkRCwgioWBHFiRWJaLxM41pCCgBAspS7gFJnIp55JpLYpyPtcpE1CwErpUQQIQ98np7t9V8M-txSZbVphb50xtfYsZ0wBCx5zr_6lSUkrBleroyS-68G3oRtsoqRnjXPFOne3Udn_BltkqdIsN64xBtjlQ9vNAHY93_KVydv2nzaaTu1HClYD4E-c9kZk</recordid><startdate>20160216</startdate><enddate>20160216</enddate><creator>Gruber, A.</creator><creator>Su, C.‐H.</creator><creator>Crow, W. T.</creator><creator>Zwieback, S.</creator><creator>Dorigo, W. A.</creator><creator>Wagner, W.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20160216</creationdate><title>Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis</title><author>Gruber, A. ; Su, C.‐H. ; Crow, W. T. ; Zwieback, S. ; Dorigo, W. A. ; Wagner, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4340-34a0c01d5e1c45eb809040f0e09152e014c66b61884dfbb89140d1f0bb8705003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Collocation</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Error analysis</topic><topic>error characterization</topic><topic>error cross‐correlation</topic><topic>Estimating</topic><topic>Geophysics</topic><topic>In situ measurement</topic><topic>Permissible error</topic><topic>Retrieval</topic><topic>Soil moisture</topic><topic>triple collocation</topic><topic>validation</topic><topic>Vegetation</topic><topic>Water balance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gruber, A.</creatorcontrib><creatorcontrib>Su, C.‐H.</creatorcontrib><creatorcontrib>Crow, W. T.</creatorcontrib><creatorcontrib>Zwieback, S.</creatorcontrib><creatorcontrib>Dorigo, W. A.</creatorcontrib><creatorcontrib>Wagner, W.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gruber, A.</au><au>Su, C.‐H.</au><au>Crow, W. T.</au><au>Zwieback, S.</au><au>Dorigo, W. A.</au><au>Wagner, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2016-02-16</date><risdate>2016</risdate><volume>121</volume><issue>3</issue><spage>1208</spage><epage>1219</epage><pages>1208-1219</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Global soil moisture records are essential for studying the role of hydrologic processes within the larger earth system. Various studies have shown the benefit of assimilating satellite‐based soil moisture data into water balance models or merging multisource soil moisture retrievals into a unified data set. However, this requires an appropriate parameterization of the error structures of the underlying data sets. While triple collocation (TC) analysis has been widely recognized as a powerful tool for estimating random error variances of coarse‐resolution soil moisture data sets, the estimation of error cross covariances remains an unresolved challenge. Here we propose a method—referred to as extended collocation (EC) analysis—for estimating error cross‐correlations by generalizing the TC method to an arbitrary number of data sets and relaxing the therein made assumption of zero error cross‐correlation for certain data set combinations. A synthetic experiment shows that EC analysis is able to reliably recover true error cross‐correlation levels. Applied to real soil moisture retrievals from Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) C‐band and X‐band observations together with advanced scatterometer (ASCAT) retrievals, modeled data from Global Land Data Assimilation System (GLDAS)‐Noah and in situ measurements drawn from the International Soil Moisture Network, EC yields reasonable and strong nonzero error cross‐correlations between the two AMSR‐E products. Against expectation, nonzero error cross‐correlations are also found between ASCAT and AMSR‐E. We conclude that the proposed EC method represents an important step toward a fully parameterized error covariance matrix for coarse‐resolution soil moisture data sets, which is vital for any rigorous data assimilation framework or data merging scheme. Key Points Triple collocation analysis is extended to an arbitrary number of data sets Extended collocation analysis allows for the estimation of error cross‐correlations The method is evaluated using synthetic and real data</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JD024027</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2016-02, Vol.121 (3), p.1208-1219
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1800483228
source Access via Wiley Online Library; Wiley Free Content; Alma/SFX Local Collection
subjects Collocation
Data assimilation
Data collection
Datasets
Error analysis
error characterization
error cross‐correlation
Estimating
Geophysics
In situ measurement
Permissible error
Retrieval
Soil moisture
triple collocation
validation
Vegetation
Water balance
title Estimating error cross‐correlations in soil moisture data sets using extended collocation analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T04%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20error%20cross%E2%80%90correlations%20in%20soil%20moisture%20data%20sets%20using%20extended%20collocation%20analysis&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Gruber,%20A.&rft.date=2016-02-16&rft.volume=121&rft.issue=3&rft.spage=1208&rft.epage=1219&rft.pages=1208-1219&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2015JD024027&rft_dat=%3Cproquest_cross%3E1776664277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1768112272&rft_id=info:pmid/&rfr_iscdi=true