A high-level and accurate energy model of parallel and concurrent workloads

Summary The ability to predict the energy needed by a system to perform a task, or several concurrent parallel tasks, allows the scheduler to enforce energy‐aware policies while providing acceptable performance. The approaches in literature to model energy consumption of tasks usually focus on low‐l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2016-03, Vol.28 (3), p.822-833
Hauptverfasser: Morelli, Davide, Canciani, Andrea, Cisternino, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 833
container_issue 3
container_start_page 822
container_title Concurrency and computation
container_volume 28
creator Morelli, Davide
Canciani, Andrea
Cisternino, Antonio
description Summary The ability to predict the energy needed by a system to perform a task, or several concurrent parallel tasks, allows the scheduler to enforce energy‐aware policies while providing acceptable performance. The approaches in literature to model energy consumption of tasks usually focus on low‐level descriptors and require invasive instrumentation of the computational environment. We developed an energy model and a methodology to automatically extract features that characterize the computational environment relying only on a single power meter that measures the energy consumption of the whole system. Once the model has been built, the energy consumption of concurrent tasks can be calculated, with a statistically insignificant error, even without any power meter. We show that our model can predict with high accuracy, even only using the utilization time of the cores in a high‐performance computing enclosure, without using performance counters. Hence, the model could be easily applicable to heterogeneous systems, where collecting representative performance counters can be problematic. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cpe.3610
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800479508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800479508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4060-585cf15225b749ae1d0ecab1759b2a3b44be08e498de8427cff7fd125b67693f3</originalsourceid><addsrcrecordid>eNp10D1PwzAQgGELgUQpSPyEjCyBc-x8jaUqBVFBBxASi-U45zbUjYOdUvrvSdWqiIHpTrpHN7yEXFK4pgDRjWrwmiUUjkiPxiwKIWH8-LBHySk58_4DgFJgtEceB8G8ms1Dg19oAlmXgVRq5WSLAdboZptgacvuYnXQSCeN2Stl6445rNtgbd3CWFn6c3KipfF4sZ998no3ehneh5Pn8cNwMAkVhwTCOIuVpnEUxUXKc4m0BFSyoGmcF5FkBecFQoY8z0rMeJQqrVNd0o4naZIzzfrkave3cfZzhb4Vy8orNEbWaFde0AyAp3kM2S9VznrvUIvGVUvpNoKC2PYSXS-x7dXRcEfXlcHNv04Mp6O_vvItfh-8dAuRpCyNxdvTWLxPbqM8yaeCsR-rdXpD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800479508</pqid></control><display><type>article</type><title>A high-level and accurate energy model of parallel and concurrent workloads</title><source>Wiley Journals</source><creator>Morelli, Davide ; Canciani, Andrea ; Cisternino, Antonio</creator><creatorcontrib>Morelli, Davide ; Canciani, Andrea ; Cisternino, Antonio</creatorcontrib><description>Summary The ability to predict the energy needed by a system to perform a task, or several concurrent parallel tasks, allows the scheduler to enforce energy‐aware policies while providing acceptable performance. The approaches in literature to model energy consumption of tasks usually focus on low‐level descriptors and require invasive instrumentation of the computational environment. We developed an energy model and a methodology to automatically extract features that characterize the computational environment relying only on a single power meter that measures the energy consumption of the whole system. Once the model has been built, the energy consumption of concurrent tasks can be calculated, with a statistically insignificant error, even without any power meter. We show that our model can predict with high accuracy, even only using the utilization time of the cores in a high‐performance computing enclosure, without using performance counters. Hence, the model could be easily applicable to heterogeneous systems, where collecting representative performance counters can be problematic. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.3610</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Computation ; concurrent ; Energy consumption ; energy model ; Energy policy ; Feature extraction ; linear regression ; Mathematical models ; OPENFOAM ; parallel workloads ; Power meters ; Tasks ; Wattmeters</subject><ispartof>Concurrency and computation, 2016-03, Vol.28 (3), p.822-833</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4060-585cf15225b749ae1d0ecab1759b2a3b44be08e498de8427cff7fd125b67693f3</citedby><cites>FETCH-LOGICAL-c4060-585cf15225b749ae1d0ecab1759b2a3b44be08e498de8427cff7fd125b67693f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.3610$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.3610$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Morelli, Davide</creatorcontrib><creatorcontrib>Canciani, Andrea</creatorcontrib><creatorcontrib>Cisternino, Antonio</creatorcontrib><title>A high-level and accurate energy model of parallel and concurrent workloads</title><title>Concurrency and computation</title><addtitle>Concurrency Computat.: Pract. Exper</addtitle><description>Summary The ability to predict the energy needed by a system to perform a task, or several concurrent parallel tasks, allows the scheduler to enforce energy‐aware policies while providing acceptable performance. The approaches in literature to model energy consumption of tasks usually focus on low‐level descriptors and require invasive instrumentation of the computational environment. We developed an energy model and a methodology to automatically extract features that characterize the computational environment relying only on a single power meter that measures the energy consumption of the whole system. Once the model has been built, the energy consumption of concurrent tasks can be calculated, with a statistically insignificant error, even without any power meter. We show that our model can predict with high accuracy, even only using the utilization time of the cores in a high‐performance computing enclosure, without using performance counters. Hence, the model could be easily applicable to heterogeneous systems, where collecting representative performance counters can be problematic. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Computation</subject><subject>concurrent</subject><subject>Energy consumption</subject><subject>energy model</subject><subject>Energy policy</subject><subject>Feature extraction</subject><subject>linear regression</subject><subject>Mathematical models</subject><subject>OPENFOAM</subject><subject>parallel workloads</subject><subject>Power meters</subject><subject>Tasks</subject><subject>Wattmeters</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQgGELgUQpSPyEjCyBc-x8jaUqBVFBBxASi-U45zbUjYOdUvrvSdWqiIHpTrpHN7yEXFK4pgDRjWrwmiUUjkiPxiwKIWH8-LBHySk58_4DgFJgtEceB8G8ms1Dg19oAlmXgVRq5WSLAdboZptgacvuYnXQSCeN2Stl6445rNtgbd3CWFn6c3KipfF4sZ998no3ehneh5Pn8cNwMAkVhwTCOIuVpnEUxUXKc4m0BFSyoGmcF5FkBecFQoY8z0rMeJQqrVNd0o4naZIzzfrkave3cfZzhb4Vy8orNEbWaFde0AyAp3kM2S9VznrvUIvGVUvpNoKC2PYSXS-x7dXRcEfXlcHNv04Mp6O_vvItfh-8dAuRpCyNxdvTWLxPbqM8yaeCsR-rdXpD</recordid><startdate>20160310</startdate><enddate>20160310</enddate><creator>Morelli, Davide</creator><creator>Canciani, Andrea</creator><creator>Cisternino, Antonio</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160310</creationdate><title>A high-level and accurate energy model of parallel and concurrent workloads</title><author>Morelli, Davide ; Canciani, Andrea ; Cisternino, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4060-585cf15225b749ae1d0ecab1759b2a3b44be08e498de8427cff7fd125b67693f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computation</topic><topic>concurrent</topic><topic>Energy consumption</topic><topic>energy model</topic><topic>Energy policy</topic><topic>Feature extraction</topic><topic>linear regression</topic><topic>Mathematical models</topic><topic>OPENFOAM</topic><topic>parallel workloads</topic><topic>Power meters</topic><topic>Tasks</topic><topic>Wattmeters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morelli, Davide</creatorcontrib><creatorcontrib>Canciani, Andrea</creatorcontrib><creatorcontrib>Cisternino, Antonio</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morelli, Davide</au><au>Canciani, Andrea</au><au>Cisternino, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-level and accurate energy model of parallel and concurrent workloads</atitle><jtitle>Concurrency and computation</jtitle><addtitle>Concurrency Computat.: Pract. Exper</addtitle><date>2016-03-10</date><risdate>2016</risdate><volume>28</volume><issue>3</issue><spage>822</spage><epage>833</epage><pages>822-833</pages><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary The ability to predict the energy needed by a system to perform a task, or several concurrent parallel tasks, allows the scheduler to enforce energy‐aware policies while providing acceptable performance. The approaches in literature to model energy consumption of tasks usually focus on low‐level descriptors and require invasive instrumentation of the computational environment. We developed an energy model and a methodology to automatically extract features that characterize the computational environment relying only on a single power meter that measures the energy consumption of the whole system. Once the model has been built, the energy consumption of concurrent tasks can be calculated, with a statistically insignificant error, even without any power meter. We show that our model can predict with high accuracy, even only using the utilization time of the cores in a high‐performance computing enclosure, without using performance counters. Hence, the model could be easily applicable to heterogeneous systems, where collecting representative performance counters can be problematic. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cpe.3610</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2016-03, Vol.28 (3), p.822-833
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_miscellaneous_1800479508
source Wiley Journals
subjects Computation
concurrent
Energy consumption
energy model
Energy policy
Feature extraction
linear regression
Mathematical models
OPENFOAM
parallel workloads
Power meters
Tasks
Wattmeters
title A high-level and accurate energy model of parallel and concurrent workloads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-level%20and%20accurate%20energy%20model%20of%20parallel%20and%20concurrent%20workloads&rft.jtitle=Concurrency%20and%20computation&rft.au=Morelli,%20Davide&rft.date=2016-03-10&rft.volume=28&rft.issue=3&rft.spage=822&rft.epage=833&rft.pages=822-833&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.3610&rft_dat=%3Cproquest_cross%3E1800479508%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800479508&rft_id=info:pmid/&rfr_iscdi=true