Reactivity Controlling Factors for an Aromatic Carbon-Centered σ,σ,σ-Triradical: The 4,5,8-Tridehydroisoquinolinium Ion
The chemical properties of the 4,5,8‐tridehydroisoquinolinium ion (doublet ground state) and related mono‐ and biradicals were examined in the gas phase in a dual‐cell Fourier‐transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The triradical ed three hydrogen atoms in a consecutive manner...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2016-01, Vol.22 (2), p.809-815 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 815 |
---|---|
container_issue | 2 |
container_start_page | 809 |
container_title | Chemistry : a European journal |
container_volume | 22 |
creator | Vinueza, Nelson R. Jankiewicz, Bartłomiej J. Gallardo, Vanessa A. LaFavers, Gregory Z. DeSutter, Dane Nash, John J. Kenttämaa, Hilkka I. |
description | The chemical properties of the 4,5,8‐tridehydroisoquinolinium ion (doublet ground state) and related mono‐ and biradicals were examined in the gas phase in a dual‐cell Fourier‐transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The triradical ed three hydrogen atoms in a consecutive manner from tetrahydrofuran (THF) and cyclohexane molecules; this demonstrates the presence of three reactive radical sites in this molecule. The high (calculated) electron affinity (EA=6.06 eV) at the radical sites makes the triradical more reactive than two related monoradicals, the 5‐ and 8‐dehydroisoquinolinium ions (EA=4.87 and 5.06 eV, respectively), the reactivity of which is controlled predominantly by polar effects. Calculated triradical stabilization energies predict that the most reactive radical site in the triradical is not position C4, as expected based on the high EA of this radical site, but instead position C5. The latter radical site actually destabilizes the 4,8‐biradical moiety, which is singlet coupled. Indeed, experimental reactivity studies show that the radical site at C5 reacts first. This explains why the triradical is not more reactive than the 4‐dehydroisoquinolinium ion because the C5 site is the intrinsically least reactive of the three radical sites due to its low EA. Although both EA and spin–spin coupling play major roles in controlling the overall reactivity of the triradical, spin–spin coupling determines the relative reactivity of the three radical sites.
Pinning down reaction sites: Although both electron affinity (EA) and spin–spin coupling play major roles in controlling the overall reactivity of an aromatic carbon‐centered σ,σ,σ‐triradical with weakly interacting radical sites, spin–spin coupling determines the relative reactivity of each of the three radical sites (see scheme). |
doi_str_mv | 10.1002/chem.201502502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800477353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800477353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4862-c21825aabb162235fdcad2386898aaf0e1286ab092eff1a67cbcabb338f810ed3</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EaofSLUvkJYvJ4J_YcdhVUactKhTBVF1ajnPTcUniYmeg0y0PyCvh6ZRRd5WuZOnqfMdX-hB6S8mMEsI-2CX0M0aoICzNCzShgtGMF1K8RBNS5kUmBS_30esYbwghpeR8D-0zKcoNP0H338DY0f1y4xpXfhiD7zo3XON52voQcesDNgM-Cr43o7O4MqH2Q1bBMEKABv_9M32YbBFcMI2zpvuIF0vA-VRM1WbbwHLdBO-i_7lyg092t-rxmR_eoFet6SIcPr4H6HJ-vKhOs_OLk7Pq6DyzuZIss4wqJoypayoZ46JtrGkYV1KVypiWAGVKmpqUDNqWGlnY2iaYc9UqSqDhB-j91nsb0gkQR927aKHrzAB-FTVVhORFwQV_Hi1Enj4SIk_obIva4GMM0Orb4HoT1poSvalGb6rRu2pS4N2je1X30Ozw_10koNwCv10H62d0ujo9_vxUnm2zLo5wt8ua8EPLghdCX3050fPvn2j-9Ypqxf8B37Kr-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1754092554</pqid></control><display><type>article</type><title>Reactivity Controlling Factors for an Aromatic Carbon-Centered σ,σ,σ-Triradical: The 4,5,8-Tridehydroisoquinolinium Ion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vinueza, Nelson R. ; Jankiewicz, Bartłomiej J. ; Gallardo, Vanessa A. ; LaFavers, Gregory Z. ; DeSutter, Dane ; Nash, John J. ; Kenttämaa, Hilkka I.</creator><creatorcontrib>Vinueza, Nelson R. ; Jankiewicz, Bartłomiej J. ; Gallardo, Vanessa A. ; LaFavers, Gregory Z. ; DeSutter, Dane ; Nash, John J. ; Kenttämaa, Hilkka I.</creatorcontrib><description>The chemical properties of the 4,5,8‐tridehydroisoquinolinium ion (doublet ground state) and related mono‐ and biradicals were examined in the gas phase in a dual‐cell Fourier‐transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The triradical ed three hydrogen atoms in a consecutive manner from tetrahydrofuran (THF) and cyclohexane molecules; this demonstrates the presence of three reactive radical sites in this molecule. The high (calculated) electron affinity (EA=6.06 eV) at the radical sites makes the triradical more reactive than two related monoradicals, the 5‐ and 8‐dehydroisoquinolinium ions (EA=4.87 and 5.06 eV, respectively), the reactivity of which is controlled predominantly by polar effects. Calculated triradical stabilization energies predict that the most reactive radical site in the triradical is not position C4, as expected based on the high EA of this radical site, but instead position C5. The latter radical site actually destabilizes the 4,8‐biradical moiety, which is singlet coupled. Indeed, experimental reactivity studies show that the radical site at C5 reacts first. This explains why the triradical is not more reactive than the 4‐dehydroisoquinolinium ion because the C5 site is the intrinsically least reactive of the three radical sites due to its low EA. Although both EA and spin–spin coupling play major roles in controlling the overall reactivity of the triradical, spin–spin coupling determines the relative reactivity of the three radical sites.
Pinning down reaction sites: Although both electron affinity (EA) and spin–spin coupling play major roles in controlling the overall reactivity of an aromatic carbon‐centered σ,σ,σ‐triradical with weakly interacting radical sites, spin–spin coupling determines the relative reactivity of each of the three radical sites (see scheme).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201502502</identifier><identifier>PMID: 26592502</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Cyclohexane ; Electron affinity ; gas-phase reactions ; Hydrogen atoms ; ion-molecule reactions ; Mass spectrometers ; mass spectrometry ; Mathematical analysis ; Radicals ; Spin-spin coupling ; Stabilization ; structure-activity relationships ; triradicals</subject><ispartof>Chemistry : a European journal, 2016-01, Vol.22 (2), p.809-815</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4862-c21825aabb162235fdcad2386898aaf0e1286ab092eff1a67cbcabb338f810ed3</citedby><cites>FETCH-LOGICAL-c4862-c21825aabb162235fdcad2386898aaf0e1286ab092eff1a67cbcabb338f810ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201502502$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201502502$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26592502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vinueza, Nelson R.</creatorcontrib><creatorcontrib>Jankiewicz, Bartłomiej J.</creatorcontrib><creatorcontrib>Gallardo, Vanessa A.</creatorcontrib><creatorcontrib>LaFavers, Gregory Z.</creatorcontrib><creatorcontrib>DeSutter, Dane</creatorcontrib><creatorcontrib>Nash, John J.</creatorcontrib><creatorcontrib>Kenttämaa, Hilkka I.</creatorcontrib><title>Reactivity Controlling Factors for an Aromatic Carbon-Centered σ,σ,σ-Triradical: The 4,5,8-Tridehydroisoquinolinium Ion</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>The chemical properties of the 4,5,8‐tridehydroisoquinolinium ion (doublet ground state) and related mono‐ and biradicals were examined in the gas phase in a dual‐cell Fourier‐transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The triradical ed three hydrogen atoms in a consecutive manner from tetrahydrofuran (THF) and cyclohexane molecules; this demonstrates the presence of three reactive radical sites in this molecule. The high (calculated) electron affinity (EA=6.06 eV) at the radical sites makes the triradical more reactive than two related monoradicals, the 5‐ and 8‐dehydroisoquinolinium ions (EA=4.87 and 5.06 eV, respectively), the reactivity of which is controlled predominantly by polar effects. Calculated triradical stabilization energies predict that the most reactive radical site in the triradical is not position C4, as expected based on the high EA of this radical site, but instead position C5. The latter radical site actually destabilizes the 4,8‐biradical moiety, which is singlet coupled. Indeed, experimental reactivity studies show that the radical site at C5 reacts first. This explains why the triradical is not more reactive than the 4‐dehydroisoquinolinium ion because the C5 site is the intrinsically least reactive of the three radical sites due to its low EA. Although both EA and spin–spin coupling play major roles in controlling the overall reactivity of the triradical, spin–spin coupling determines the relative reactivity of the three radical sites.
Pinning down reaction sites: Although both electron affinity (EA) and spin–spin coupling play major roles in controlling the overall reactivity of an aromatic carbon‐centered σ,σ,σ‐triradical with weakly interacting radical sites, spin–spin coupling determines the relative reactivity of each of the three radical sites (see scheme).</description><subject>Cyclohexane</subject><subject>Electron affinity</subject><subject>gas-phase reactions</subject><subject>Hydrogen atoms</subject><subject>ion-molecule reactions</subject><subject>Mass spectrometers</subject><subject>mass spectrometry</subject><subject>Mathematical analysis</subject><subject>Radicals</subject><subject>Spin-spin coupling</subject><subject>Stabilization</subject><subject>structure-activity relationships</subject><subject>triradicals</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAURi0EaofSLUvkJYvJ4J_YcdhVUactKhTBVF1ajnPTcUniYmeg0y0PyCvh6ZRRd5WuZOnqfMdX-hB6S8mMEsI-2CX0M0aoICzNCzShgtGMF1K8RBNS5kUmBS_30esYbwghpeR8D-0zKcoNP0H338DY0f1y4xpXfhiD7zo3XON52voQcesDNgM-Cr43o7O4MqH2Q1bBMEKABv_9M32YbBFcMI2zpvuIF0vA-VRM1WbbwHLdBO-i_7lyg092t-rxmR_eoFet6SIcPr4H6HJ-vKhOs_OLk7Pq6DyzuZIss4wqJoypayoZ46JtrGkYV1KVypiWAGVKmpqUDNqWGlnY2iaYc9UqSqDhB-j91nsb0gkQR927aKHrzAB-FTVVhORFwQV_Hi1Enj4SIk_obIva4GMM0Orb4HoT1poSvalGb6rRu2pS4N2je1X30Ozw_10koNwCv10H62d0ujo9_vxUnm2zLo5wt8ua8EPLghdCX3050fPvn2j-9Ypqxf8B37Kr-Q</recordid><startdate>20160111</startdate><enddate>20160111</enddate><creator>Vinueza, Nelson R.</creator><creator>Jankiewicz, Bartłomiej J.</creator><creator>Gallardo, Vanessa A.</creator><creator>LaFavers, Gregory Z.</creator><creator>DeSutter, Dane</creator><creator>Nash, John J.</creator><creator>Kenttämaa, Hilkka I.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20160111</creationdate><title>Reactivity Controlling Factors for an Aromatic Carbon-Centered σ,σ,σ-Triradical: The 4,5,8-Tridehydroisoquinolinium Ion</title><author>Vinueza, Nelson R. ; Jankiewicz, Bartłomiej J. ; Gallardo, Vanessa A. ; LaFavers, Gregory Z. ; DeSutter, Dane ; Nash, John J. ; Kenttämaa, Hilkka I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4862-c21825aabb162235fdcad2386898aaf0e1286ab092eff1a67cbcabb338f810ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cyclohexane</topic><topic>Electron affinity</topic><topic>gas-phase reactions</topic><topic>Hydrogen atoms</topic><topic>ion-molecule reactions</topic><topic>Mass spectrometers</topic><topic>mass spectrometry</topic><topic>Mathematical analysis</topic><topic>Radicals</topic><topic>Spin-spin coupling</topic><topic>Stabilization</topic><topic>structure-activity relationships</topic><topic>triradicals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vinueza, Nelson R.</creatorcontrib><creatorcontrib>Jankiewicz, Bartłomiej J.</creatorcontrib><creatorcontrib>Gallardo, Vanessa A.</creatorcontrib><creatorcontrib>LaFavers, Gregory Z.</creatorcontrib><creatorcontrib>DeSutter, Dane</creatorcontrib><creatorcontrib>Nash, John J.</creatorcontrib><creatorcontrib>Kenttämaa, Hilkka I.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vinueza, Nelson R.</au><au>Jankiewicz, Bartłomiej J.</au><au>Gallardo, Vanessa A.</au><au>LaFavers, Gregory Z.</au><au>DeSutter, Dane</au><au>Nash, John J.</au><au>Kenttämaa, Hilkka I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactivity Controlling Factors for an Aromatic Carbon-Centered σ,σ,σ-Triradical: The 4,5,8-Tridehydroisoquinolinium Ion</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2016-01-11</date><risdate>2016</risdate><volume>22</volume><issue>2</issue><spage>809</spage><epage>815</epage><pages>809-815</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The chemical properties of the 4,5,8‐tridehydroisoquinolinium ion (doublet ground state) and related mono‐ and biradicals were examined in the gas phase in a dual‐cell Fourier‐transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The triradical ed three hydrogen atoms in a consecutive manner from tetrahydrofuran (THF) and cyclohexane molecules; this demonstrates the presence of three reactive radical sites in this molecule. The high (calculated) electron affinity (EA=6.06 eV) at the radical sites makes the triradical more reactive than two related monoradicals, the 5‐ and 8‐dehydroisoquinolinium ions (EA=4.87 and 5.06 eV, respectively), the reactivity of which is controlled predominantly by polar effects. Calculated triradical stabilization energies predict that the most reactive radical site in the triradical is not position C4, as expected based on the high EA of this radical site, but instead position C5. The latter radical site actually destabilizes the 4,8‐biradical moiety, which is singlet coupled. Indeed, experimental reactivity studies show that the radical site at C5 reacts first. This explains why the triradical is not more reactive than the 4‐dehydroisoquinolinium ion because the C5 site is the intrinsically least reactive of the three radical sites due to its low EA. Although both EA and spin–spin coupling play major roles in controlling the overall reactivity of the triradical, spin–spin coupling determines the relative reactivity of the three radical sites.
Pinning down reaction sites: Although both electron affinity (EA) and spin–spin coupling play major roles in controlling the overall reactivity of an aromatic carbon‐centered σ,σ,σ‐triradical with weakly interacting radical sites, spin–spin coupling determines the relative reactivity of each of the three radical sites (see scheme).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>26592502</pmid><doi>10.1002/chem.201502502</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2016-01, Vol.22 (2), p.809-815 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800477353 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cyclohexane Electron affinity gas-phase reactions Hydrogen atoms ion-molecule reactions Mass spectrometers mass spectrometry Mathematical analysis Radicals Spin-spin coupling Stabilization structure-activity relationships triradicals |
title | Reactivity Controlling Factors for an Aromatic Carbon-Centered σ,σ,σ-Triradical: The 4,5,8-Tridehydroisoquinolinium Ion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactivity%20Controlling%20Factors%20for%20an%20Aromatic%20Carbon-Centered%20%CF%83,%CF%83,%CF%83-Triradical:%20The%204,5,8-Tridehydroisoquinolinium%20Ion&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Vinueza,%20Nelson%20R.&rft.date=2016-01-11&rft.volume=22&rft.issue=2&rft.spage=809&rft.epage=815&rft.pages=809-815&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201502502&rft_dat=%3Cproquest_cross%3E1800477353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1754092554&rft_id=info:pmid/26592502&rfr_iscdi=true |