Numerical study of particle chains of a large number of randomly distributed DEP particles using iterative dipole moment method

BACKGROUND: Dielectrophoresis (DEP) has widely been used to manipulate bio‐particles in microfluidic system. The calculation of DEP interaction of a large number of dense particles has been a challenging issue. The Maxwell stress tensor (MST) method is strictly accurate in theory for DEP forces, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 2016-04, Vol.91 (4), p.1149-1156
Hauptverfasser: Liu, Le, Xie, Chuanchuan, Chen, Bo, Wu, Jiankang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1156
container_issue 4
container_start_page 1149
container_title Journal of chemical technology and biotechnology (1986)
container_volume 91
creator Liu, Le
Xie, Chuanchuan
Chen, Bo
Wu, Jiankang
description BACKGROUND: Dielectrophoresis (DEP) has widely been used to manipulate bio‐particles in microfluidic system. The calculation of DEP interaction of a large number of dense particles has been a challenging issue. The Maxwell stress tensor (MST) method is strictly accurate in theory for DEP forces, but the complicated numerical computation is very difficult to implement. An iterative dipole moment method (IDM) is proposed in this paper to study the interaction forces and particle chains of a large number of dense particles in a uniform electrical field. RESULTS: The numerical example of ten particles interaction confirms that the IDM is able to calculate particle interaction forces in good agreement with the MST method. Particle chains of fifty randomly distributed dense particles in a uniform electrical field were simulated using the IDM method and were well consistent with experimental observations. Particle chains of different particle sizes are also investigated. CONCLUSION: The interaction forces of DEP particles calculated by the IDM method are found to be in good agreement with those obtained using the Maxwell stress tensor (MST) method and easy to implement. The simulated particle chains show essential characteristics well consistent with experimental observations. © 2015 Society of Chemical Industry
doi_str_mv 10.1002/jctb.4700
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800477337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1776659276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4620-2ec7fa09954424a64a50c4fa1c7eb325b6222b6caeead0624d559143fbb1317b3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBuAIgcRSOPALsMQFDmnHjj-SI11KC1oVJFrRm-U4k62XJN7aDrAn_jqJUvWAhDhYlkbPO9LozbKXFI4pADvZ2VQfcwXwKFtRqFTOpYTH2QqYLHMmlHiaPYtxBwCyZHKV_b4cewzOmo7ENDYH4luyNyE52yGxt8YNcR4Z0pmwRTKMfY1hngQzNL7vDqRxMQVXjwkb8v7sy0M6kjG6YUtcwmCS-4GT3Ptpa-97HBLpMd365nn2pDVdxBf3_1F2_eHsan2Rbz6ff1y_2-SWSwY5Q6taA1UlOGfcSG4EWN4aahXWBRO1ZIzV0hpE04BkvBGiorxo65oWVNXFUfZm2bsP_m7EmHTvosWuMwP6MWpaAnClikL9nyolpaiYkhN9_Rfd-TEM0yGzgrIQgsKk3i7KBh9jwFbvg-tNOGgKem5Nz63pubXJniz2p-vw8G-oP62vTu8T-ZKYesBfDwkTvmupCiX0t8tzfXpxM13Ib_Rm8q8W3xqvzTa4qK-_MqASplcyzoo_ZQOyHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770835510</pqid></control><display><type>article</type><title>Numerical study of particle chains of a large number of randomly distributed DEP particles using iterative dipole moment method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Le ; Xie, Chuanchuan ; Chen, Bo ; Wu, Jiankang</creator><creatorcontrib>Liu, Le ; Xie, Chuanchuan ; Chen, Bo ; Wu, Jiankang</creatorcontrib><description>BACKGROUND: Dielectrophoresis (DEP) has widely been used to manipulate bio‐particles in microfluidic system. The calculation of DEP interaction of a large number of dense particles has been a challenging issue. The Maxwell stress tensor (MST) method is strictly accurate in theory for DEP forces, but the complicated numerical computation is very difficult to implement. An iterative dipole moment method (IDM) is proposed in this paper to study the interaction forces and particle chains of a large number of dense particles in a uniform electrical field. RESULTS: The numerical example of ten particles interaction confirms that the IDM is able to calculate particle interaction forces in good agreement with the MST method. Particle chains of fifty randomly distributed dense particles in a uniform electrical field were simulated using the IDM method and were well consistent with experimental observations. Particle chains of different particle sizes are also investigated. CONCLUSION: The interaction forces of DEP particles calculated by the IDM method are found to be in good agreement with those obtained using the Maxwell stress tensor (MST) method and easy to implement. The simulated particle chains show essential characteristics well consistent with experimental observations. © 2015 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.4700</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Accuracy ; Biotechnology ; Computer simulation ; dielectrophoresis ; Dipole moment ; equivalent dipole moment (EDM) ; iterative dipole moment (IDM) ; Iterative methods ; Mathematical analysis ; Mathematical models ; Maxwell stress tensor (MST) ; particle interaction ; Stress tensors</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2016-04, Vol.91 (4), p.1149-1156</ispartof><rights>2015 Society of Chemical Industry</rights><rights>2016 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4620-2ec7fa09954424a64a50c4fa1c7eb325b6222b6caeead0624d559143fbb1317b3</citedby><cites>FETCH-LOGICAL-c4620-2ec7fa09954424a64a50c4fa1c7eb325b6222b6caeead0624d559143fbb1317b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.4700$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.4700$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Le</creatorcontrib><creatorcontrib>Xie, Chuanchuan</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Wu, Jiankang</creatorcontrib><title>Numerical study of particle chains of a large number of randomly distributed DEP particles using iterative dipole moment method</title><title>Journal of chemical technology and biotechnology (1986)</title><addtitle>J. Chem. Technol. Biotechnol</addtitle><description>BACKGROUND: Dielectrophoresis (DEP) has widely been used to manipulate bio‐particles in microfluidic system. The calculation of DEP interaction of a large number of dense particles has been a challenging issue. The Maxwell stress tensor (MST) method is strictly accurate in theory for DEP forces, but the complicated numerical computation is very difficult to implement. An iterative dipole moment method (IDM) is proposed in this paper to study the interaction forces and particle chains of a large number of dense particles in a uniform electrical field. RESULTS: The numerical example of ten particles interaction confirms that the IDM is able to calculate particle interaction forces in good agreement with the MST method. Particle chains of fifty randomly distributed dense particles in a uniform electrical field were simulated using the IDM method and were well consistent with experimental observations. Particle chains of different particle sizes are also investigated. CONCLUSION: The interaction forces of DEP particles calculated by the IDM method are found to be in good agreement with those obtained using the Maxwell stress tensor (MST) method and easy to implement. The simulated particle chains show essential characteristics well consistent with experimental observations. © 2015 Society of Chemical Industry</description><subject>Accuracy</subject><subject>Biotechnology</subject><subject>Computer simulation</subject><subject>dielectrophoresis</subject><subject>Dipole moment</subject><subject>equivalent dipole moment (EDM)</subject><subject>iterative dipole moment (IDM)</subject><subject>Iterative methods</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maxwell stress tensor (MST)</subject><subject>particle interaction</subject><subject>Stress tensors</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBuAIgcRSOPALsMQFDmnHjj-SI11KC1oVJFrRm-U4k62XJN7aDrAn_jqJUvWAhDhYlkbPO9LozbKXFI4pADvZ2VQfcwXwKFtRqFTOpYTH2QqYLHMmlHiaPYtxBwCyZHKV_b4cewzOmo7ENDYH4luyNyE52yGxt8YNcR4Z0pmwRTKMfY1hngQzNL7vDqRxMQVXjwkb8v7sy0M6kjG6YUtcwmCS-4GT3Ptpa-97HBLpMd365nn2pDVdxBf3_1F2_eHsan2Rbz6ff1y_2-SWSwY5Q6taA1UlOGfcSG4EWN4aahXWBRO1ZIzV0hpE04BkvBGiorxo65oWVNXFUfZm2bsP_m7EmHTvosWuMwP6MWpaAnClikL9nyolpaiYkhN9_Rfd-TEM0yGzgrIQgsKk3i7KBh9jwFbvg-tNOGgKem5Nz63pubXJniz2p-vw8G-oP62vTu8T-ZKYesBfDwkTvmupCiX0t8tzfXpxM13Ib_Rm8q8W3xqvzTa4qK-_MqASplcyzoo_ZQOyHw</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Liu, Le</creator><creator>Xie, Chuanchuan</creator><creator>Chen, Bo</creator><creator>Wu, Jiankang</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201604</creationdate><title>Numerical study of particle chains of a large number of randomly distributed DEP particles using iterative dipole moment method</title><author>Liu, Le ; Xie, Chuanchuan ; Chen, Bo ; Wu, Jiankang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4620-2ec7fa09954424a64a50c4fa1c7eb325b6222b6caeead0624d559143fbb1317b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Biotechnology</topic><topic>Computer simulation</topic><topic>dielectrophoresis</topic><topic>Dipole moment</topic><topic>equivalent dipole moment (EDM)</topic><topic>iterative dipole moment (IDM)</topic><topic>Iterative methods</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maxwell stress tensor (MST)</topic><topic>particle interaction</topic><topic>Stress tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Le</creatorcontrib><creatorcontrib>Xie, Chuanchuan</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Wu, Jiankang</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Le</au><au>Xie, Chuanchuan</au><au>Chen, Bo</au><au>Wu, Jiankang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of particle chains of a large number of randomly distributed DEP particles using iterative dipole moment method</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><addtitle>J. Chem. Technol. Biotechnol</addtitle><date>2016-04</date><risdate>2016</risdate><volume>91</volume><issue>4</issue><spage>1149</spage><epage>1156</epage><pages>1149-1156</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND: Dielectrophoresis (DEP) has widely been used to manipulate bio‐particles in microfluidic system. The calculation of DEP interaction of a large number of dense particles has been a challenging issue. The Maxwell stress tensor (MST) method is strictly accurate in theory for DEP forces, but the complicated numerical computation is very difficult to implement. An iterative dipole moment method (IDM) is proposed in this paper to study the interaction forces and particle chains of a large number of dense particles in a uniform electrical field. RESULTS: The numerical example of ten particles interaction confirms that the IDM is able to calculate particle interaction forces in good agreement with the MST method. Particle chains of fifty randomly distributed dense particles in a uniform electrical field were simulated using the IDM method and were well consistent with experimental observations. Particle chains of different particle sizes are also investigated. CONCLUSION: The interaction forces of DEP particles calculated by the IDM method are found to be in good agreement with those obtained using the Maxwell stress tensor (MST) method and easy to implement. The simulated particle chains show essential characteristics well consistent with experimental observations. © 2015 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.4700</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2016-04, Vol.91 (4), p.1149-1156
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_miscellaneous_1800477337
source Wiley Online Library Journals Frontfile Complete
subjects Accuracy
Biotechnology
Computer simulation
dielectrophoresis
Dipole moment
equivalent dipole moment (EDM)
iterative dipole moment (IDM)
Iterative methods
Mathematical analysis
Mathematical models
Maxwell stress tensor (MST)
particle interaction
Stress tensors
title Numerical study of particle chains of a large number of randomly distributed DEP particles using iterative dipole moment method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20particle%20chains%20of%20a%20large%20number%20of%20randomly%20distributed%20DEP%20particles%20using%20iterative%20dipole%20moment%20method&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Liu,%20Le&rft.date=2016-04&rft.volume=91&rft.issue=4&rft.spage=1149&rft.epage=1156&rft.pages=1149-1156&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.4700&rft_dat=%3Cproquest_cross%3E1776659276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770835510&rft_id=info:pmid/&rfr_iscdi=true