New low bandgap near-IR conjugated D-A copolymers for BHJ polymer solar cell applications
We synthesized two novel ultra low bandgap donor-acceptor (D-A) copolymers (E(g) ≤ 1.2 eV), containing the thiadiazoloquinoxaline unit as the main electron accepting unit (A) and benzodithiophene (BDT) and dithienosilole (DTS) as different donor units (D), denoted as P1 and P2, respectively, using t...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2016-03, Vol.18 (12), p.8389-8400 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8400 |
---|---|
container_issue | 12 |
container_start_page | 8389 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 18 |
creator | Keshtov, M L Kuklin, S A Radychev, N A Nikolaev, A Y Ostapov, I E Krayushkin, M M Konstantinov, I O Koukaras, E N Sharma, Abhishek Sharma, G D |
description | We synthesized two novel ultra low bandgap donor-acceptor (D-A) copolymers (E(g) ≤ 1.2 eV), containing the thiadiazoloquinoxaline unit as the main electron accepting unit (A) and benzodithiophene (BDT) and dithienosilole (DTS) as different donor units (D), denoted as P1 and P2, respectively, using the cross-coupling Stille reaction. The copolymers possess light absorption ranging from UV (350 nm) to near-IR (1300 nm) with optical bandgaps of 1.16 eV and 1.08 eV, respectively. Quantum-chemical calculations and experimental data were compared for proposing a more detailed concept for the optical and electronic properties of these copolymers which can be used as donors for polymer solar cells (PSCs). The PSCs based on optimized P1:PC71BM and P2:PC71BM showed overall power conversion efficiencies (PCEs) of 4.32% and 3.48%, respectively. Although P2 possesses a broad absorption coverage of up to 1300 nm, the lower PCE may be attributed to the low J(sc), due to the poor driving force for exciton dissociation, since the LUMO offset with PC71BM is less than 0.3 eV. The PCE has been significantly increased to 7.27% and 6.68% for solvent vapor annealing (SVA) treated P1:PC71BM and P2:PC71BM active layers, respectively. This improvement arises from the appropriate nanoscale morphology and an increase in hole mobility, induced by the SVA treatment of the active layers. |
doi_str_mv | 10.1039/c5cp07705b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800476831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800476831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-90298d14c66cdeddeecc012b6879ee0eb2e7aa1e8b6275f64ef30e1691ac3db03</originalsourceid><addsrcrecordid>eNqFkM1LwzAchoMobk4v_gGSowjVpGmT9LjVj02GiujBU0mTX0dH19SkZey_t3NzV0-_Dx5eXh6ELim5pYQldzrWDRGCxPkRGtKIsyAhMjo-7IIP0Jn3S0IIjSk7RYOQJyzkMhqirxdY48quca5qs1ANrkG5YPaOta2X3UK1YPB9MO7PxlabFTiPC-vwZPqM9w_sbaUc1lBVWDVNVWrVlrb25-ikUJWHi_0coc_Hh490Gsxfn2bpeB5oJnnb1wsTaWikOdcGjAHQmtAw51IkAATyEIRSFGTOQxEXPIKCEaA8oUozkxM2Qte73MbZ7w58m61Kv22jarCdz6gkJBJcMvo_KkREOUmY7NGbHaqd9d5BkTWuXCm3ySjJttazNE7ffq1Pevhqn9vlKzAH9E8z-wEMhHyY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774160938</pqid></control><display><type>article</type><title>New low bandgap near-IR conjugated D-A copolymers for BHJ polymer solar cell applications</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Keshtov, M L ; Kuklin, S A ; Radychev, N A ; Nikolaev, A Y ; Ostapov, I E ; Krayushkin, M M ; Konstantinov, I O ; Koukaras, E N ; Sharma, Abhishek ; Sharma, G D</creator><creatorcontrib>Keshtov, M L ; Kuklin, S A ; Radychev, N A ; Nikolaev, A Y ; Ostapov, I E ; Krayushkin, M M ; Konstantinov, I O ; Koukaras, E N ; Sharma, Abhishek ; Sharma, G D</creatorcontrib><description>We synthesized two novel ultra low bandgap donor-acceptor (D-A) copolymers (E(g) ≤ 1.2 eV), containing the thiadiazoloquinoxaline unit as the main electron accepting unit (A) and benzodithiophene (BDT) and dithienosilole (DTS) as different donor units (D), denoted as P1 and P2, respectively, using the cross-coupling Stille reaction. The copolymers possess light absorption ranging from UV (350 nm) to near-IR (1300 nm) with optical bandgaps of 1.16 eV and 1.08 eV, respectively. Quantum-chemical calculations and experimental data were compared for proposing a more detailed concept for the optical and electronic properties of these copolymers which can be used as donors for polymer solar cells (PSCs). The PSCs based on optimized P1:PC71BM and P2:PC71BM showed overall power conversion efficiencies (PCEs) of 4.32% and 3.48%, respectively. Although P2 possesses a broad absorption coverage of up to 1300 nm, the lower PCE may be attributed to the low J(sc), due to the poor driving force for exciton dissociation, since the LUMO offset with PC71BM is less than 0.3 eV. The PCE has been significantly increased to 7.27% and 6.68% for solvent vapor annealing (SVA) treated P1:PC71BM and P2:PC71BM active layers, respectively. This improvement arises from the appropriate nanoscale morphology and an increase in hole mobility, induced by the SVA treatment of the active layers.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp07705b</identifier><identifier>PMID: 26932684</identifier><language>eng</language><publisher>England</publisher><subject>Annealing ; Copolymers ; Cross coupling ; Nanostructure ; Photovoltaic cells ; Quantum chemistry ; Solar cells ; Solvents</subject><ispartof>Physical chemistry chemical physics : PCCP, 2016-03, Vol.18 (12), p.8389-8400</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-90298d14c66cdeddeecc012b6879ee0eb2e7aa1e8b6275f64ef30e1691ac3db03</citedby><cites>FETCH-LOGICAL-c386t-90298d14c66cdeddeecc012b6879ee0eb2e7aa1e8b6275f64ef30e1691ac3db03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26932684$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keshtov, M L</creatorcontrib><creatorcontrib>Kuklin, S A</creatorcontrib><creatorcontrib>Radychev, N A</creatorcontrib><creatorcontrib>Nikolaev, A Y</creatorcontrib><creatorcontrib>Ostapov, I E</creatorcontrib><creatorcontrib>Krayushkin, M M</creatorcontrib><creatorcontrib>Konstantinov, I O</creatorcontrib><creatorcontrib>Koukaras, E N</creatorcontrib><creatorcontrib>Sharma, Abhishek</creatorcontrib><creatorcontrib>Sharma, G D</creatorcontrib><title>New low bandgap near-IR conjugated D-A copolymers for BHJ polymer solar cell applications</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We synthesized two novel ultra low bandgap donor-acceptor (D-A) copolymers (E(g) ≤ 1.2 eV), containing the thiadiazoloquinoxaline unit as the main electron accepting unit (A) and benzodithiophene (BDT) and dithienosilole (DTS) as different donor units (D), denoted as P1 and P2, respectively, using the cross-coupling Stille reaction. The copolymers possess light absorption ranging from UV (350 nm) to near-IR (1300 nm) with optical bandgaps of 1.16 eV and 1.08 eV, respectively. Quantum-chemical calculations and experimental data were compared for proposing a more detailed concept for the optical and electronic properties of these copolymers which can be used as donors for polymer solar cells (PSCs). The PSCs based on optimized P1:PC71BM and P2:PC71BM showed overall power conversion efficiencies (PCEs) of 4.32% and 3.48%, respectively. Although P2 possesses a broad absorption coverage of up to 1300 nm, the lower PCE may be attributed to the low J(sc), due to the poor driving force for exciton dissociation, since the LUMO offset with PC71BM is less than 0.3 eV. The PCE has been significantly increased to 7.27% and 6.68% for solvent vapor annealing (SVA) treated P1:PC71BM and P2:PC71BM active layers, respectively. This improvement arises from the appropriate nanoscale morphology and an increase in hole mobility, induced by the SVA treatment of the active layers.</description><subject>Annealing</subject><subject>Copolymers</subject><subject>Cross coupling</subject><subject>Nanostructure</subject><subject>Photovoltaic cells</subject><subject>Quantum chemistry</subject><subject>Solar cells</subject><subject>Solvents</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAchoMobk4v_gGSowjVpGmT9LjVj02GiujBU0mTX0dH19SkZey_t3NzV0-_Dx5eXh6ELim5pYQldzrWDRGCxPkRGtKIsyAhMjo-7IIP0Jn3S0IIjSk7RYOQJyzkMhqirxdY48quca5qs1ANrkG5YPaOta2X3UK1YPB9MO7PxlabFTiPC-vwZPqM9w_sbaUc1lBVWDVNVWrVlrb25-ikUJWHi_0coc_Hh490Gsxfn2bpeB5oJnnb1wsTaWikOdcGjAHQmtAw51IkAATyEIRSFGTOQxEXPIKCEaA8oUozkxM2Qte73MbZ7w58m61Kv22jarCdz6gkJBJcMvo_KkREOUmY7NGbHaqd9d5BkTWuXCm3ySjJttazNE7ffq1Pevhqn9vlKzAH9E8z-wEMhHyY</recordid><startdate>20160328</startdate><enddate>20160328</enddate><creator>Keshtov, M L</creator><creator>Kuklin, S A</creator><creator>Radychev, N A</creator><creator>Nikolaev, A Y</creator><creator>Ostapov, I E</creator><creator>Krayushkin, M M</creator><creator>Konstantinov, I O</creator><creator>Koukaras, E N</creator><creator>Sharma, Abhishek</creator><creator>Sharma, G D</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160328</creationdate><title>New low bandgap near-IR conjugated D-A copolymers for BHJ polymer solar cell applications</title><author>Keshtov, M L ; Kuklin, S A ; Radychev, N A ; Nikolaev, A Y ; Ostapov, I E ; Krayushkin, M M ; Konstantinov, I O ; Koukaras, E N ; Sharma, Abhishek ; Sharma, G D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-90298d14c66cdeddeecc012b6879ee0eb2e7aa1e8b6275f64ef30e1691ac3db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annealing</topic><topic>Copolymers</topic><topic>Cross coupling</topic><topic>Nanostructure</topic><topic>Photovoltaic cells</topic><topic>Quantum chemistry</topic><topic>Solar cells</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keshtov, M L</creatorcontrib><creatorcontrib>Kuklin, S A</creatorcontrib><creatorcontrib>Radychev, N A</creatorcontrib><creatorcontrib>Nikolaev, A Y</creatorcontrib><creatorcontrib>Ostapov, I E</creatorcontrib><creatorcontrib>Krayushkin, M M</creatorcontrib><creatorcontrib>Konstantinov, I O</creatorcontrib><creatorcontrib>Koukaras, E N</creatorcontrib><creatorcontrib>Sharma, Abhishek</creatorcontrib><creatorcontrib>Sharma, G D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keshtov, M L</au><au>Kuklin, S A</au><au>Radychev, N A</au><au>Nikolaev, A Y</au><au>Ostapov, I E</au><au>Krayushkin, M M</au><au>Konstantinov, I O</au><au>Koukaras, E N</au><au>Sharma, Abhishek</au><au>Sharma, G D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New low bandgap near-IR conjugated D-A copolymers for BHJ polymer solar cell applications</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-03-28</date><risdate>2016</risdate><volume>18</volume><issue>12</issue><spage>8389</spage><epage>8400</epage><pages>8389-8400</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We synthesized two novel ultra low bandgap donor-acceptor (D-A) copolymers (E(g) ≤ 1.2 eV), containing the thiadiazoloquinoxaline unit as the main electron accepting unit (A) and benzodithiophene (BDT) and dithienosilole (DTS) as different donor units (D), denoted as P1 and P2, respectively, using the cross-coupling Stille reaction. The copolymers possess light absorption ranging from UV (350 nm) to near-IR (1300 nm) with optical bandgaps of 1.16 eV and 1.08 eV, respectively. Quantum-chemical calculations and experimental data were compared for proposing a more detailed concept for the optical and electronic properties of these copolymers which can be used as donors for polymer solar cells (PSCs). The PSCs based on optimized P1:PC71BM and P2:PC71BM showed overall power conversion efficiencies (PCEs) of 4.32% and 3.48%, respectively. Although P2 possesses a broad absorption coverage of up to 1300 nm, the lower PCE may be attributed to the low J(sc), due to the poor driving force for exciton dissociation, since the LUMO offset with PC71BM is less than 0.3 eV. The PCE has been significantly increased to 7.27% and 6.68% for solvent vapor annealing (SVA) treated P1:PC71BM and P2:PC71BM active layers, respectively. This improvement arises from the appropriate nanoscale morphology and an increase in hole mobility, induced by the SVA treatment of the active layers.</abstract><cop>England</cop><pmid>26932684</pmid><doi>10.1039/c5cp07705b</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2016-03, Vol.18 (12), p.8389-8400 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800476831 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Annealing Copolymers Cross coupling Nanostructure Photovoltaic cells Quantum chemistry Solar cells Solvents |
title | New low bandgap near-IR conjugated D-A copolymers for BHJ polymer solar cell applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20low%20bandgap%20near-IR%20conjugated%20D-A%20copolymers%20for%20BHJ%20polymer%20solar%20cell%20applications&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Keshtov,%20M%20L&rft.date=2016-03-28&rft.volume=18&rft.issue=12&rft.spage=8389&rft.epage=8400&rft.pages=8389-8400&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp07705b&rft_dat=%3Cproquest_cross%3E1800476831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1774160938&rft_id=info:pmid/26932684&rfr_iscdi=true |