Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling
Polymer‐free (6,5) single‐walled carbon nanotubes (SWCNTs) prepared using the gel permeation approach are integrated into SWCNT:C60 solar cells. Evaporation‐driven self‐assembly is used to form large‐area SWCNT thin films from the surfactant‐stabilized aqueous suspensions. The thicknesses of various...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2016-01, Vol.6 (1), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | np |
container_title | Advanced energy materials |
container_volume | 6 |
creator | Pfohl, Moritz Glaser, Konstantin Ludwig, Jens Tune, Daniel D. Dehm, Simone Kayser, Christian Colsmann, Alexander Krupke, Ralph Flavel, Benjamin S. |
description | Polymer‐free (6,5) single‐walled carbon nanotubes (SWCNTs) prepared using the gel permeation approach are integrated into SWCNT:C60 solar cells. Evaporation‐driven self‐assembly is used to form large‐area SWCNT thin films from the surfactant‐stabilized aqueous suspensions. The thicknesses of various layers within the solar cell are optimized by theoretical modeling using transfer matrix calculations, where the distribution of the electric field within the stack is matched to light absorption by the SWCNTs through either their primary (S11) or secondary (S22) absorption peaks, or a combination thereof. The validity of the model is verified experimentally through a detailed parameter study and then used to develop SWCNT:C60 solar cells with high open‐circuit voltage (0.44 V) as well as a cutting‐edge internal quantum efficiency of up to 86% through the nanotube S11 transition, over an active area of 0.105 cm2.
Surfactant‐stabilized (6,5) single‐walled carbon nanotubes (SWCNTs) are integrated into solar cells. It is shown that by tailoring the layer stack through transfer matrix calculations it is possible to generate a photocurrent from the SWCNT transitions of either S11, S22, or a combination of both. |
doi_str_mv | 10.1002/aenm.201501345 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800476132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3914710391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5655-c457feb71f7cd06522831c404729a4d752135d31604f20e937370ec47750547d3</originalsourceid><addsrcrecordid>eNqFkc9PwjAUxxejiQS5em7ixcuwP1d2JAugiSCJGI61bG863Fpsh8p_bwmGGC_28nr4fF7e-74ouiS4TzCmNxpM06eYCEwYFydRhySEx8mA49Pjn9HzqOf9GofHU4IZ60TPc3CldY02OaCRed3XBkyLbInmtt414OKxA0CZditr0Ewb225XgB5trR3KoK49-qg0WjhtfAkOTXXrqi80tQXUlXm5iM5KXXvo_dRu9DQeLbLb-P5hcpcN7-NcJELEOReyhJUkpcwLnAhKB4zkHHNJU80LKShhomAkwbykGFImmcSQcykFFlwWrBtdH_punH3fgm9VU_k8jKcN2K1XZBCWlglhNKBXf9C13ToTplNECh4ilOkgUP0DlTvrvYNSbVzVaLdTBKt95mqfuTpmHoT0IHxWNez-odVwNJv-duODW_kWvo6udm8qCZsKtZxNVLaU43DERM3YN-ejkd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1754501798</pqid></control><display><type>article</type><title>Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pfohl, Moritz ; Glaser, Konstantin ; Ludwig, Jens ; Tune, Daniel D. ; Dehm, Simone ; Kayser, Christian ; Colsmann, Alexander ; Krupke, Ralph ; Flavel, Benjamin S.</creator><creatorcontrib>Pfohl, Moritz ; Glaser, Konstantin ; Ludwig, Jens ; Tune, Daniel D. ; Dehm, Simone ; Kayser, Christian ; Colsmann, Alexander ; Krupke, Ralph ; Flavel, Benjamin S.</creatorcontrib><description>Polymer‐free (6,5) single‐walled carbon nanotubes (SWCNTs) prepared using the gel permeation approach are integrated into SWCNT:C60 solar cells. Evaporation‐driven self‐assembly is used to form large‐area SWCNT thin films from the surfactant‐stabilized aqueous suspensions. The thicknesses of various layers within the solar cell are optimized by theoretical modeling using transfer matrix calculations, where the distribution of the electric field within the stack is matched to light absorption by the SWCNTs through either their primary (S11) or secondary (S22) absorption peaks, or a combination thereof. The validity of the model is verified experimentally through a detailed parameter study and then used to develop SWCNT:C60 solar cells with high open‐circuit voltage (0.44 V) as well as a cutting‐edge internal quantum efficiency of up to 86% through the nanotube S11 transition, over an active area of 0.105 cm2.
Surfactant‐stabilized (6,5) single‐walled carbon nanotubes (SWCNTs) are integrated into solar cells. It is shown that by tailoring the layer stack through transfer matrix calculations it is possible to generate a photocurrent from the SWCNT transitions of either S11, S22, or a combination of both.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201501345</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Mathematical models ; Modelling ; Nanostructure ; Nanotechnology ; near infrared (NIR) ; Photovoltaic cells ; photovoltaics ; renewable energy ; Self assembly ; Single wall carbon nanotubes ; Solar cells ; Solar energy ; Stacks ; SWCNTs ; thin films</subject><ispartof>Advanced energy materials, 2016-01, Vol.6 (1), p.np-n/a</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5655-c457feb71f7cd06522831c404729a4d752135d31604f20e937370ec47750547d3</citedby><cites>FETCH-LOGICAL-c5655-c457feb71f7cd06522831c404729a4d752135d31604f20e937370ec47750547d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201501345$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201501345$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pfohl, Moritz</creatorcontrib><creatorcontrib>Glaser, Konstantin</creatorcontrib><creatorcontrib>Ludwig, Jens</creatorcontrib><creatorcontrib>Tune, Daniel D.</creatorcontrib><creatorcontrib>Dehm, Simone</creatorcontrib><creatorcontrib>Kayser, Christian</creatorcontrib><creatorcontrib>Colsmann, Alexander</creatorcontrib><creatorcontrib>Krupke, Ralph</creatorcontrib><creatorcontrib>Flavel, Benjamin S.</creatorcontrib><title>Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Polymer‐free (6,5) single‐walled carbon nanotubes (SWCNTs) prepared using the gel permeation approach are integrated into SWCNT:C60 solar cells. Evaporation‐driven self‐assembly is used to form large‐area SWCNT thin films from the surfactant‐stabilized aqueous suspensions. The thicknesses of various layers within the solar cell are optimized by theoretical modeling using transfer matrix calculations, where the distribution of the electric field within the stack is matched to light absorption by the SWCNTs through either their primary (S11) or secondary (S22) absorption peaks, or a combination thereof. The validity of the model is verified experimentally through a detailed parameter study and then used to develop SWCNT:C60 solar cells with high open‐circuit voltage (0.44 V) as well as a cutting‐edge internal quantum efficiency of up to 86% through the nanotube S11 transition, over an active area of 0.105 cm2.
Surfactant‐stabilized (6,5) single‐walled carbon nanotubes (SWCNTs) are integrated into solar cells. It is shown that by tailoring the layer stack through transfer matrix calculations it is possible to generate a photocurrent from the SWCNT transitions of either S11, S22, or a combination of both.</description><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>near infrared (NIR)</subject><subject>Photovoltaic cells</subject><subject>photovoltaics</subject><subject>renewable energy</subject><subject>Self assembly</subject><subject>Single wall carbon nanotubes</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Stacks</subject><subject>SWCNTs</subject><subject>thin films</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc9PwjAUxxejiQS5em7ixcuwP1d2JAugiSCJGI61bG863Fpsh8p_bwmGGC_28nr4fF7e-74ouiS4TzCmNxpM06eYCEwYFydRhySEx8mA49Pjn9HzqOf9GofHU4IZ60TPc3CldY02OaCRed3XBkyLbInmtt414OKxA0CZditr0Ewb225XgB5trR3KoK49-qg0WjhtfAkOTXXrqi80tQXUlXm5iM5KXXvo_dRu9DQeLbLb-P5hcpcN7-NcJELEOReyhJUkpcwLnAhKB4zkHHNJU80LKShhomAkwbykGFImmcSQcykFFlwWrBtdH_punH3fgm9VU_k8jKcN2K1XZBCWlglhNKBXf9C13ToTplNECh4ilOkgUP0DlTvrvYNSbVzVaLdTBKt95mqfuTpmHoT0IHxWNez-odVwNJv-duODW_kWvo6udm8qCZsKtZxNVLaU43DERM3YN-ejkd4</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Pfohl, Moritz</creator><creator>Glaser, Konstantin</creator><creator>Ludwig, Jens</creator><creator>Tune, Daniel D.</creator><creator>Dehm, Simone</creator><creator>Kayser, Christian</creator><creator>Colsmann, Alexander</creator><creator>Krupke, Ralph</creator><creator>Flavel, Benjamin S.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling</title><author>Pfohl, Moritz ; Glaser, Konstantin ; Ludwig, Jens ; Tune, Daniel D. ; Dehm, Simone ; Kayser, Christian ; Colsmann, Alexander ; Krupke, Ralph ; Flavel, Benjamin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5655-c457feb71f7cd06522831c404729a4d752135d31604f20e937370ec47750547d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>near infrared (NIR)</topic><topic>Photovoltaic cells</topic><topic>photovoltaics</topic><topic>renewable energy</topic><topic>Self assembly</topic><topic>Single wall carbon nanotubes</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Stacks</topic><topic>SWCNTs</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfohl, Moritz</creatorcontrib><creatorcontrib>Glaser, Konstantin</creatorcontrib><creatorcontrib>Ludwig, Jens</creatorcontrib><creatorcontrib>Tune, Daniel D.</creatorcontrib><creatorcontrib>Dehm, Simone</creatorcontrib><creatorcontrib>Kayser, Christian</creatorcontrib><creatorcontrib>Colsmann, Alexander</creatorcontrib><creatorcontrib>Krupke, Ralph</creatorcontrib><creatorcontrib>Flavel, Benjamin S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfohl, Moritz</au><au>Glaser, Konstantin</au><au>Ludwig, Jens</au><au>Tune, Daniel D.</au><au>Dehm, Simone</au><au>Kayser, Christian</au><au>Colsmann, Alexander</au><au>Krupke, Ralph</au><au>Flavel, Benjamin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Polymer‐free (6,5) single‐walled carbon nanotubes (SWCNTs) prepared using the gel permeation approach are integrated into SWCNT:C60 solar cells. Evaporation‐driven self‐assembly is used to form large‐area SWCNT thin films from the surfactant‐stabilized aqueous suspensions. The thicknesses of various layers within the solar cell are optimized by theoretical modeling using transfer matrix calculations, where the distribution of the electric field within the stack is matched to light absorption by the SWCNTs through either their primary (S11) or secondary (S22) absorption peaks, or a combination thereof. The validity of the model is verified experimentally through a detailed parameter study and then used to develop SWCNT:C60 solar cells with high open‐circuit voltage (0.44 V) as well as a cutting‐edge internal quantum efficiency of up to 86% through the nanotube S11 transition, over an active area of 0.105 cm2.
Surfactant‐stabilized (6,5) single‐walled carbon nanotubes (SWCNTs) are integrated into solar cells. It is shown that by tailoring the layer stack through transfer matrix calculations it is possible to generate a photocurrent from the SWCNT transitions of either S11, S22, or a combination of both.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201501345</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2016-01, Vol.6 (1), p.np-n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800476132 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Mathematical models Modelling Nanostructure Nanotechnology near infrared (NIR) Photovoltaic cells photovoltaics renewable energy Self assembly Single wall carbon nanotubes Solar cells Solar energy Stacks SWCNTs thin films |
title | Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Enhancement%20of%20Polymer-Free%20Carbon%20Nanotube%20Solar%20Cells%20via%20Transfer%20Matrix%20Modeling&rft.jtitle=Advanced%20energy%20materials&rft.au=Pfohl,%20Moritz&rft.date=2016-01-01&rft.volume=6&rft.issue=1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201501345&rft_dat=%3Cproquest_cross%3E3914710391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1754501798&rft_id=info:pmid/&rfr_iscdi=true |