Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling

Polymer‐free (6,5) single‐walled carbon nanotubes (SWCNTs) prepared using the gel permeation approach are integrated into SWCNT:C60 solar cells. Evaporation‐driven self‐assembly is used to form large‐area SWCNT thin films from the surfactant‐stabilized aqueous suspensions. The thicknesses of various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2016-01, Vol.6 (1), p.np-n/a
Hauptverfasser: Pfohl, Moritz, Glaser, Konstantin, Ludwig, Jens, Tune, Daniel D., Dehm, Simone, Kayser, Christian, Colsmann, Alexander, Krupke, Ralph, Flavel, Benjamin S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page np
container_title Advanced energy materials
container_volume 6
creator Pfohl, Moritz
Glaser, Konstantin
Ludwig, Jens
Tune, Daniel D.
Dehm, Simone
Kayser, Christian
Colsmann, Alexander
Krupke, Ralph
Flavel, Benjamin S.
description Polymer‐free (6,5) single‐walled carbon nanotubes (SWCNTs) prepared using the gel permeation approach are integrated into SWCNT:C60 solar cells. Evaporation‐driven self‐assembly is used to form large‐area SWCNT thin films from the surfactant‐stabilized aqueous suspensions. The thicknesses of various layers within the solar cell are optimized by theoretical modeling using transfer matrix calculations, where the distribution of the electric field within the stack is matched to light absorption by the SWCNTs through either their primary (S11) or secondary (S22) absorption peaks, or a combination thereof. The validity of the model is verified experimentally through a detailed parameter study and then used to develop SWCNT:C60 solar cells with high open‐circuit voltage (0.44 V) as well as a cutting‐edge internal quantum efficiency of up to 86% through the nanotube S11 transition, over an active area of 0.105 cm2. Surfactant‐stabilized (6,5) single‐walled carbon nanotubes (SWCNTs) are integrated into solar cells. It is shown that by tailoring the layer stack through transfer matrix calculations it is possible to generate a photocurrent from the SWCNT transitions of either S11, S22, or a combination of both.
doi_str_mv 10.1002/aenm.201501345
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800476132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3914710391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5655-c457feb71f7cd06522831c404729a4d752135d31604f20e937370ec47750547d3</originalsourceid><addsrcrecordid>eNqFkc9PwjAUxxejiQS5em7ixcuwP1d2JAugiSCJGI61bG863Fpsh8p_bwmGGC_28nr4fF7e-74ouiS4TzCmNxpM06eYCEwYFydRhySEx8mA49Pjn9HzqOf9GofHU4IZ60TPc3CldY02OaCRed3XBkyLbInmtt414OKxA0CZditr0Ewb225XgB5trR3KoK49-qg0WjhtfAkOTXXrqi80tQXUlXm5iM5KXXvo_dRu9DQeLbLb-P5hcpcN7-NcJELEOReyhJUkpcwLnAhKB4zkHHNJU80LKShhomAkwbykGFImmcSQcykFFlwWrBtdH_punH3fgm9VU_k8jKcN2K1XZBCWlglhNKBXf9C13ToTplNECh4ilOkgUP0DlTvrvYNSbVzVaLdTBKt95mqfuTpmHoT0IHxWNez-odVwNJv-duODW_kWvo6udm8qCZsKtZxNVLaU43DERM3YN-ejkd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1754501798</pqid></control><display><type>article</type><title>Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pfohl, Moritz ; Glaser, Konstantin ; Ludwig, Jens ; Tune, Daniel D. ; Dehm, Simone ; Kayser, Christian ; Colsmann, Alexander ; Krupke, Ralph ; Flavel, Benjamin S.</creator><creatorcontrib>Pfohl, Moritz ; Glaser, Konstantin ; Ludwig, Jens ; Tune, Daniel D. ; Dehm, Simone ; Kayser, Christian ; Colsmann, Alexander ; Krupke, Ralph ; Flavel, Benjamin S.</creatorcontrib><description>Polymer‐free (6,5) single‐walled carbon nanotubes (SWCNTs) prepared using the gel permeation approach are integrated into SWCNT:C60 solar cells. Evaporation‐driven self‐assembly is used to form large‐area SWCNT thin films from the surfactant‐stabilized aqueous suspensions. The thicknesses of various layers within the solar cell are optimized by theoretical modeling using transfer matrix calculations, where the distribution of the electric field within the stack is matched to light absorption by the SWCNTs through either their primary (S11) or secondary (S22) absorption peaks, or a combination thereof. The validity of the model is verified experimentally through a detailed parameter study and then used to develop SWCNT:C60 solar cells with high open‐circuit voltage (0.44 V) as well as a cutting‐edge internal quantum efficiency of up to 86% through the nanotube S11 transition, over an active area of 0.105 cm2. Surfactant‐stabilized (6,5) single‐walled carbon nanotubes (SWCNTs) are integrated into solar cells. It is shown that by tailoring the layer stack through transfer matrix calculations it is possible to generate a photocurrent from the SWCNT transitions of either S11, S22, or a combination of both.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201501345</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Mathematical models ; Modelling ; Nanostructure ; Nanotechnology ; near infrared (NIR) ; Photovoltaic cells ; photovoltaics ; renewable energy ; Self assembly ; Single wall carbon nanotubes ; Solar cells ; Solar energy ; Stacks ; SWCNTs ; thin films</subject><ispartof>Advanced energy materials, 2016-01, Vol.6 (1), p.np-n/a</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5655-c457feb71f7cd06522831c404729a4d752135d31604f20e937370ec47750547d3</citedby><cites>FETCH-LOGICAL-c5655-c457feb71f7cd06522831c404729a4d752135d31604f20e937370ec47750547d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201501345$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201501345$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Pfohl, Moritz</creatorcontrib><creatorcontrib>Glaser, Konstantin</creatorcontrib><creatorcontrib>Ludwig, Jens</creatorcontrib><creatorcontrib>Tune, Daniel D.</creatorcontrib><creatorcontrib>Dehm, Simone</creatorcontrib><creatorcontrib>Kayser, Christian</creatorcontrib><creatorcontrib>Colsmann, Alexander</creatorcontrib><creatorcontrib>Krupke, Ralph</creatorcontrib><creatorcontrib>Flavel, Benjamin S.</creatorcontrib><title>Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Polymer‐free (6,5) single‐walled carbon nanotubes (SWCNTs) prepared using the gel permeation approach are integrated into SWCNT:C60 solar cells. Evaporation‐driven self‐assembly is used to form large‐area SWCNT thin films from the surfactant‐stabilized aqueous suspensions. The thicknesses of various layers within the solar cell are optimized by theoretical modeling using transfer matrix calculations, where the distribution of the electric field within the stack is matched to light absorption by the SWCNTs through either their primary (S11) or secondary (S22) absorption peaks, or a combination thereof. The validity of the model is verified experimentally through a detailed parameter study and then used to develop SWCNT:C60 solar cells with high open‐circuit voltage (0.44 V) as well as a cutting‐edge internal quantum efficiency of up to 86% through the nanotube S11 transition, over an active area of 0.105 cm2. Surfactant‐stabilized (6,5) single‐walled carbon nanotubes (SWCNTs) are integrated into solar cells. It is shown that by tailoring the layer stack through transfer matrix calculations it is possible to generate a photocurrent from the SWCNT transitions of either S11, S22, or a combination of both.</description><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>near infrared (NIR)</subject><subject>Photovoltaic cells</subject><subject>photovoltaics</subject><subject>renewable energy</subject><subject>Self assembly</subject><subject>Single wall carbon nanotubes</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Stacks</subject><subject>SWCNTs</subject><subject>thin films</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc9PwjAUxxejiQS5em7ixcuwP1d2JAugiSCJGI61bG863Fpsh8p_bwmGGC_28nr4fF7e-74ouiS4TzCmNxpM06eYCEwYFydRhySEx8mA49Pjn9HzqOf9GofHU4IZ60TPc3CldY02OaCRed3XBkyLbInmtt414OKxA0CZditr0Ewb225XgB5trR3KoK49-qg0WjhtfAkOTXXrqi80tQXUlXm5iM5KXXvo_dRu9DQeLbLb-P5hcpcN7-NcJELEOReyhJUkpcwLnAhKB4zkHHNJU80LKShhomAkwbykGFImmcSQcykFFlwWrBtdH_punH3fgm9VU_k8jKcN2K1XZBCWlglhNKBXf9C13ToTplNECh4ilOkgUP0DlTvrvYNSbVzVaLdTBKt95mqfuTpmHoT0IHxWNez-odVwNJv-duODW_kWvo6udm8qCZsKtZxNVLaU43DERM3YN-ejkd4</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Pfohl, Moritz</creator><creator>Glaser, Konstantin</creator><creator>Ludwig, Jens</creator><creator>Tune, Daniel D.</creator><creator>Dehm, Simone</creator><creator>Kayser, Christian</creator><creator>Colsmann, Alexander</creator><creator>Krupke, Ralph</creator><creator>Flavel, Benjamin S.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling</title><author>Pfohl, Moritz ; Glaser, Konstantin ; Ludwig, Jens ; Tune, Daniel D. ; Dehm, Simone ; Kayser, Christian ; Colsmann, Alexander ; Krupke, Ralph ; Flavel, Benjamin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5655-c457feb71f7cd06522831c404729a4d752135d31604f20e937370ec47750547d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>near infrared (NIR)</topic><topic>Photovoltaic cells</topic><topic>photovoltaics</topic><topic>renewable energy</topic><topic>Self assembly</topic><topic>Single wall carbon nanotubes</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Stacks</topic><topic>SWCNTs</topic><topic>thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfohl, Moritz</creatorcontrib><creatorcontrib>Glaser, Konstantin</creatorcontrib><creatorcontrib>Ludwig, Jens</creatorcontrib><creatorcontrib>Tune, Daniel D.</creatorcontrib><creatorcontrib>Dehm, Simone</creatorcontrib><creatorcontrib>Kayser, Christian</creatorcontrib><creatorcontrib>Colsmann, Alexander</creatorcontrib><creatorcontrib>Krupke, Ralph</creatorcontrib><creatorcontrib>Flavel, Benjamin S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfohl, Moritz</au><au>Glaser, Konstantin</au><au>Ludwig, Jens</au><au>Tune, Daniel D.</au><au>Dehm, Simone</au><au>Kayser, Christian</au><au>Colsmann, Alexander</au><au>Krupke, Ralph</au><au>Flavel, Benjamin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Polymer‐free (6,5) single‐walled carbon nanotubes (SWCNTs) prepared using the gel permeation approach are integrated into SWCNT:C60 solar cells. Evaporation‐driven self‐assembly is used to form large‐area SWCNT thin films from the surfactant‐stabilized aqueous suspensions. The thicknesses of various layers within the solar cell are optimized by theoretical modeling using transfer matrix calculations, where the distribution of the electric field within the stack is matched to light absorption by the SWCNTs through either their primary (S11) or secondary (S22) absorption peaks, or a combination thereof. The validity of the model is verified experimentally through a detailed parameter study and then used to develop SWCNT:C60 solar cells with high open‐circuit voltage (0.44 V) as well as a cutting‐edge internal quantum efficiency of up to 86% through the nanotube S11 transition, over an active area of 0.105 cm2. Surfactant‐stabilized (6,5) single‐walled carbon nanotubes (SWCNTs) are integrated into solar cells. It is shown that by tailoring the layer stack through transfer matrix calculations it is possible to generate a photocurrent from the SWCNT transitions of either S11, S22, or a combination of both.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201501345</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2016-01, Vol.6 (1), p.np-n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_miscellaneous_1800476132
source Wiley Online Library Journals Frontfile Complete
subjects Mathematical models
Modelling
Nanostructure
Nanotechnology
near infrared (NIR)
Photovoltaic cells
photovoltaics
renewable energy
Self assembly
Single wall carbon nanotubes
Solar cells
Solar energy
Stacks
SWCNTs
thin films
title Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A10%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Enhancement%20of%20Polymer-Free%20Carbon%20Nanotube%20Solar%20Cells%20via%20Transfer%20Matrix%20Modeling&rft.jtitle=Advanced%20energy%20materials&rft.au=Pfohl,%20Moritz&rft.date=2016-01-01&rft.volume=6&rft.issue=1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201501345&rft_dat=%3Cproquest_cross%3E3914710391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1754501798&rft_id=info:pmid/&rfr_iscdi=true