Transport of microorganisms into cellulose nanofiber mats
Nanofiber mats hold potential in numerous applications that interface with microorganisms. However, a fundamental study that quantifies the transport of microorganisms into three-dimensional microenvironments, such as nanofiber mats, has not yet been conducted. Here, we evaluate the microbial uptake...
Gespeichert in:
Veröffentlicht in: | RSC advances 2016-01, Vol.6 (29), p.24438-24445 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24445 |
---|---|
container_issue | 29 |
container_start_page | 24438 |
container_title | RSC advances |
container_volume | 6 |
creator | Rieger, K. A Thyagarajan, R Hoen, M. E Yeung, H. F Ford, D. M Schiffman, J. D |
description | Nanofiber mats hold potential in numerous applications that interface with microorganisms. However, a fundamental study that quantifies the transport of microorganisms into three-dimensional microenvironments, such as nanofiber mats, has not yet been conducted. Here, we evaluate the microbial uptake capacity of three hydrophilic cellulose sorbents, a high surface area electrospun nanofiber mat, as well as two commercial products, a macrofibrous Fisherbrand fabric and an adsorptive Sartorius membrane. The small average fiber diameter (∼1.0 μm) and large porosity of the nanofiber mats enabled a 21 times greater collection of
Escherichia coli
K12 per milligram of material than the macrofibrous Fisherbrand controls and 220 times more than the Sartorius controls. In most cases, the exposure time of the nanofiber mats to the microorganisms was sufficient to reach a quasi-equilibrium state of microbial uptake, allowing the calculation of an adsorption coefficient (
K
eq
) that relates the concentration of cells in the sorbent to the concentration of cells remaining in solution. The
K
eq
of the nanofiber mats was 420, compared to 9.2 and 0.67 for the Fisherbrand and Sartorius controls, respectively. In addition to
E. coli
, we studied the cellulose nanofiber mat uptake of two additional medically relevant and distinct microorganisms, Gram-negative
Pseudomonas aeruginosa
PA01 and Gram-positive
Staphylococcus aureus
MW2, to probe whether microorganism removal is bacteria-specific. The high uptake capacity of all three bacteria by the nanofiber mats indicates that microbial uptake is independent of the microorganism's adhesion mechanism. This work suggests that cellulose nanofiber mat "sponges" are a green platform technology that has the potential to remove detrimental microorganisms from wounds, trap bacteria within a protective military textile, or remediate contaminated water.
Electrospun cellulose nanofiber mat "sponges" are a green platform technology that has the potential to remove detrimental microorganisms from wounds, trap bacteria within a protective military textile, or remediate contaminated water. |
doi_str_mv | 10.1039/c6ra01394e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800475482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919964373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-74b4787430261df8bad9e1c7e07d63a4cb69b3dbf42e866baaa3bfa52175ed413</originalsourceid><addsrcrecordid>eNqFkEFLxDAQRoMouKx78S70KEI1adKkOS7LugoLgqznMkkTqbRNzbQH_71dK-rNucwcHjPzPUIuGb1llOs7KyNQxrVwJ2SRUSHTjEp9-mc-JyvENzqVzFkm2YLoQ4QO-xCHJPikrW0MIb5CV2OLSd0NIbGuacYmoEs66IKvjYtJCwNekDMPDbrVd1-Sl_vtYfOQ7p92j5v1PrWc6SFVwghVKMHpdK_yhYFKO2aVo6qSHIQ1UhteGS8yV0hpAIAbD3nGVO4qwfiSXM97-xjeR4dD2dZ4fAo6F0YsmWZaS8EV_x8tKBUqF0U2oTczOgVGjM6XfaxbiB8lo-XRZrmRz-svm9sJvprhiPaH-7XNPwEYfnDf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800475482</pqid></control><display><type>article</type><title>Transport of microorganisms into cellulose nanofiber mats</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Rieger, K. A ; Thyagarajan, R ; Hoen, M. E ; Yeung, H. F ; Ford, D. M ; Schiffman, J. D</creator><creatorcontrib>Rieger, K. A ; Thyagarajan, R ; Hoen, M. E ; Yeung, H. F ; Ford, D. M ; Schiffman, J. D</creatorcontrib><description>Nanofiber mats hold potential in numerous applications that interface with microorganisms. However, a fundamental study that quantifies the transport of microorganisms into three-dimensional microenvironments, such as nanofiber mats, has not yet been conducted. Here, we evaluate the microbial uptake capacity of three hydrophilic cellulose sorbents, a high surface area electrospun nanofiber mat, as well as two commercial products, a macrofibrous Fisherbrand fabric and an adsorptive Sartorius membrane. The small average fiber diameter (∼1.0 μm) and large porosity of the nanofiber mats enabled a 21 times greater collection of
Escherichia coli
K12 per milligram of material than the macrofibrous Fisherbrand controls and 220 times more than the Sartorius controls. In most cases, the exposure time of the nanofiber mats to the microorganisms was sufficient to reach a quasi-equilibrium state of microbial uptake, allowing the calculation of an adsorption coefficient (
K
eq
) that relates the concentration of cells in the sorbent to the concentration of cells remaining in solution. The
K
eq
of the nanofiber mats was 420, compared to 9.2 and 0.67 for the Fisherbrand and Sartorius controls, respectively. In addition to
E. coli
, we studied the cellulose nanofiber mat uptake of two additional medically relevant and distinct microorganisms, Gram-negative
Pseudomonas aeruginosa
PA01 and Gram-positive
Staphylococcus aureus
MW2, to probe whether microorganism removal is bacteria-specific. The high uptake capacity of all three bacteria by the nanofiber mats indicates that microbial uptake is independent of the microorganism's adhesion mechanism. This work suggests that cellulose nanofiber mat "sponges" are a green platform technology that has the potential to remove detrimental microorganisms from wounds, trap bacteria within a protective military textile, or remediate contaminated water.
Electrospun cellulose nanofiber mat "sponges" are a green platform technology that has the potential to remove detrimental microorganisms from wounds, trap bacteria within a protective military textile, or remediate contaminated water.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c6ra01394e</identifier><language>eng</language><subject>Bacteria ; Cellulose ; Escherichia coli ; Mats ; Microorganisms ; Nanostructure ; Pseudomonas aeruginosa ; Sorbents ; Staphylococcus aureus ; Transport ; Uptakes</subject><ispartof>RSC advances, 2016-01, Vol.6 (29), p.24438-24445</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-74b4787430261df8bad9e1c7e07d63a4cb69b3dbf42e866baaa3bfa52175ed413</citedby><cites>FETCH-LOGICAL-c319t-74b4787430261df8bad9e1c7e07d63a4cb69b3dbf42e866baaa3bfa52175ed413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Rieger, K. A</creatorcontrib><creatorcontrib>Thyagarajan, R</creatorcontrib><creatorcontrib>Hoen, M. E</creatorcontrib><creatorcontrib>Yeung, H. F</creatorcontrib><creatorcontrib>Ford, D. M</creatorcontrib><creatorcontrib>Schiffman, J. D</creatorcontrib><title>Transport of microorganisms into cellulose nanofiber mats</title><title>RSC advances</title><description>Nanofiber mats hold potential in numerous applications that interface with microorganisms. However, a fundamental study that quantifies the transport of microorganisms into three-dimensional microenvironments, such as nanofiber mats, has not yet been conducted. Here, we evaluate the microbial uptake capacity of three hydrophilic cellulose sorbents, a high surface area electrospun nanofiber mat, as well as two commercial products, a macrofibrous Fisherbrand fabric and an adsorptive Sartorius membrane. The small average fiber diameter (∼1.0 μm) and large porosity of the nanofiber mats enabled a 21 times greater collection of
Escherichia coli
K12 per milligram of material than the macrofibrous Fisherbrand controls and 220 times more than the Sartorius controls. In most cases, the exposure time of the nanofiber mats to the microorganisms was sufficient to reach a quasi-equilibrium state of microbial uptake, allowing the calculation of an adsorption coefficient (
K
eq
) that relates the concentration of cells in the sorbent to the concentration of cells remaining in solution. The
K
eq
of the nanofiber mats was 420, compared to 9.2 and 0.67 for the Fisherbrand and Sartorius controls, respectively. In addition to
E. coli
, we studied the cellulose nanofiber mat uptake of two additional medically relevant and distinct microorganisms, Gram-negative
Pseudomonas aeruginosa
PA01 and Gram-positive
Staphylococcus aureus
MW2, to probe whether microorganism removal is bacteria-specific. The high uptake capacity of all three bacteria by the nanofiber mats indicates that microbial uptake is independent of the microorganism's adhesion mechanism. This work suggests that cellulose nanofiber mat "sponges" are a green platform technology that has the potential to remove detrimental microorganisms from wounds, trap bacteria within a protective military textile, or remediate contaminated water.
Electrospun cellulose nanofiber mat "sponges" are a green platform technology that has the potential to remove detrimental microorganisms from wounds, trap bacteria within a protective military textile, or remediate contaminated water.</description><subject>Bacteria</subject><subject>Cellulose</subject><subject>Escherichia coli</subject><subject>Mats</subject><subject>Microorganisms</subject><subject>Nanostructure</subject><subject>Pseudomonas aeruginosa</subject><subject>Sorbents</subject><subject>Staphylococcus aureus</subject><subject>Transport</subject><subject>Uptakes</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAQRoMouKx78S70KEI1adKkOS7LugoLgqznMkkTqbRNzbQH_71dK-rNucwcHjPzPUIuGb1llOs7KyNQxrVwJ2SRUSHTjEp9-mc-JyvENzqVzFkm2YLoQ4QO-xCHJPikrW0MIb5CV2OLSd0NIbGuacYmoEs66IKvjYtJCwNekDMPDbrVd1-Sl_vtYfOQ7p92j5v1PrWc6SFVwghVKMHpdK_yhYFKO2aVo6qSHIQ1UhteGS8yV0hpAIAbD3nGVO4qwfiSXM97-xjeR4dD2dZ4fAo6F0YsmWZaS8EV_x8tKBUqF0U2oTczOgVGjM6XfaxbiB8lo-XRZrmRz-svm9sJvprhiPaH-7XNPwEYfnDf</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Rieger, K. A</creator><creator>Thyagarajan, R</creator><creator>Hoen, M. E</creator><creator>Yeung, H. F</creator><creator>Ford, D. M</creator><creator>Schiffman, J. D</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7T7</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20160101</creationdate><title>Transport of microorganisms into cellulose nanofiber mats</title><author>Rieger, K. A ; Thyagarajan, R ; Hoen, M. E ; Yeung, H. F ; Ford, D. M ; Schiffman, J. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-74b4787430261df8bad9e1c7e07d63a4cb69b3dbf42e866baaa3bfa52175ed413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacteria</topic><topic>Cellulose</topic><topic>Escherichia coli</topic><topic>Mats</topic><topic>Microorganisms</topic><topic>Nanostructure</topic><topic>Pseudomonas aeruginosa</topic><topic>Sorbents</topic><topic>Staphylococcus aureus</topic><topic>Transport</topic><topic>Uptakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rieger, K. A</creatorcontrib><creatorcontrib>Thyagarajan, R</creatorcontrib><creatorcontrib>Hoen, M. E</creatorcontrib><creatorcontrib>Yeung, H. F</creatorcontrib><creatorcontrib>Ford, D. M</creatorcontrib><creatorcontrib>Schiffman, J. D</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rieger, K. A</au><au>Thyagarajan, R</au><au>Hoen, M. E</au><au>Yeung, H. F</au><au>Ford, D. M</au><au>Schiffman, J. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport of microorganisms into cellulose nanofiber mats</atitle><jtitle>RSC advances</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>6</volume><issue>29</issue><spage>24438</spage><epage>24445</epage><pages>24438-24445</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Nanofiber mats hold potential in numerous applications that interface with microorganisms. However, a fundamental study that quantifies the transport of microorganisms into three-dimensional microenvironments, such as nanofiber mats, has not yet been conducted. Here, we evaluate the microbial uptake capacity of three hydrophilic cellulose sorbents, a high surface area electrospun nanofiber mat, as well as two commercial products, a macrofibrous Fisherbrand fabric and an adsorptive Sartorius membrane. The small average fiber diameter (∼1.0 μm) and large porosity of the nanofiber mats enabled a 21 times greater collection of
Escherichia coli
K12 per milligram of material than the macrofibrous Fisherbrand controls and 220 times more than the Sartorius controls. In most cases, the exposure time of the nanofiber mats to the microorganisms was sufficient to reach a quasi-equilibrium state of microbial uptake, allowing the calculation of an adsorption coefficient (
K
eq
) that relates the concentration of cells in the sorbent to the concentration of cells remaining in solution. The
K
eq
of the nanofiber mats was 420, compared to 9.2 and 0.67 for the Fisherbrand and Sartorius controls, respectively. In addition to
E. coli
, we studied the cellulose nanofiber mat uptake of two additional medically relevant and distinct microorganisms, Gram-negative
Pseudomonas aeruginosa
PA01 and Gram-positive
Staphylococcus aureus
MW2, to probe whether microorganism removal is bacteria-specific. The high uptake capacity of all three bacteria by the nanofiber mats indicates that microbial uptake is independent of the microorganism's adhesion mechanism. This work suggests that cellulose nanofiber mat "sponges" are a green platform technology that has the potential to remove detrimental microorganisms from wounds, trap bacteria within a protective military textile, or remediate contaminated water.
Electrospun cellulose nanofiber mat "sponges" are a green platform technology that has the potential to remove detrimental microorganisms from wounds, trap bacteria within a protective military textile, or remediate contaminated water.</abstract><doi>10.1039/c6ra01394e</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2016-01, Vol.6 (29), p.24438-24445 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800475482 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Bacteria Cellulose Escherichia coli Mats Microorganisms Nanostructure Pseudomonas aeruginosa Sorbents Staphylococcus aureus Transport Uptakes |
title | Transport of microorganisms into cellulose nanofiber mats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20of%20microorganisms%20into%20cellulose%20nanofiber%20mats&rft.jtitle=RSC%20advances&rft.au=Rieger,%20K.%20A&rft.date=2016-01-01&rft.volume=6&rft.issue=29&rft.spage=24438&rft.epage=24445&rft.pages=24438-24445&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c6ra01394e&rft_dat=%3Cproquest_cross%3E1919964373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1800475482&rft_id=info:pmid/&rfr_iscdi=true |