On molecular topological properties of hex-derived networks
Topological indices are numerical parameters of a molecular graph, which characterize its topology and are usually graph invariant. In quantitative structure–activity relationship/quantitative structure–property relationship study, physico‐chemical properties and topological indices such as Randić,...
Gespeichert in:
Veröffentlicht in: | Journal of chemometrics 2016-03, Vol.30 (3), p.121-129 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 3 |
container_start_page | 121 |
container_title | Journal of chemometrics |
container_volume | 30 |
creator | Imran, Muhammad Baig, Abdul Qudair Ali, Haidar |
description | Topological indices are numerical parameters of a molecular graph, which characterize its topology and are usually graph invariant. In quantitative structure–activity relationship/quantitative structure–property relationship study, physico‐chemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks. Copyright © 2016 John Wiley & Sons, Ltd.
In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by a hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4 and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks. |
doi_str_mv | 10.1002/cem.2785 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800474759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800474759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3645-15fc4c7d02d93006e4230dd446f31cc5edcc942e124977866062b315b1bbe97d3</originalsourceid><addsrcrecordid>eNp10F9LwzAUBfAgCs4p-BEKvvjSmTRp0-CTlDmFuYn_30Kb3Gq3dqlJ67Zvb8dkoODTfbg_DoeD0CnBA4JxcKGgGgQ8DvdQj2AhfBLEb_uoh-M48gWN6SE6cm6GcfejrIcupwuvMiWotkyt15jalOa9UGnp1dbUYJsCnGdy7wNWvgZbfIH2FtAsjZ27Y3SQp6WDk5_bR8_Xw6fkxh9PR7fJ1dhXNGKhT8JcMcU1DrSgGEfAAoq1ZizKKVEqBK2UYAGQgAnO4yjCUZBREmYky0BwTfvofJvbVfpswTWyKpyCskwXYFonSYwx44yHoqNnf-jMtHbRtZOEc4JDRrsNdoHKGucs5LK2RZXatSRYblaU3Ypys2JH_S1dFiWs_3UyGd799oVrYLXzqZ3LiFMeytfJSN5T8fI4eRjLhH4DMxSA8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771054338</pqid></control><display><type>article</type><title>On molecular topological properties of hex-derived networks</title><source>Access via Wiley Online Library</source><creator>Imran, Muhammad ; Baig, Abdul Qudair ; Ali, Haidar</creator><creatorcontrib>Imran, Muhammad ; Baig, Abdul Qudair ; Ali, Haidar</creatorcontrib><description>Topological indices are numerical parameters of a molecular graph, which characterize its topology and are usually graph invariant. In quantitative structure–activity relationship/quantitative structure–property relationship study, physico‐chemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks. Copyright © 2016 John Wiley & Sons, Ltd.
In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by a hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4 and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.2785</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>atom-bond connectivity (ABC) index ; Biochemistry ; Chemical compounds ; general Randić index ; geometric-arithmetic (GA) index ; Graph theory ; Graphs ; HDN1(n) ; HDN2(n) ; hex-derived networks ; hex‐derived networks, HDN1(n), HDN2(n) ; Invariants ; Mathematical analysis ; Molecular chemistry ; Networks ; Topology</subject><ispartof>Journal of chemometrics, 2016-03, Vol.30 (3), p.121-129</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3645-15fc4c7d02d93006e4230dd446f31cc5edcc942e124977866062b315b1bbe97d3</citedby><cites>FETCH-LOGICAL-c3645-15fc4c7d02d93006e4230dd446f31cc5edcc942e124977866062b315b1bbe97d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.2785$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.2785$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Baig, Abdul Qudair</creatorcontrib><creatorcontrib>Ali, Haidar</creatorcontrib><title>On molecular topological properties of hex-derived networks</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>Topological indices are numerical parameters of a molecular graph, which characterize its topology and are usually graph invariant. In quantitative structure–activity relationship/quantitative structure–property relationship study, physico‐chemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks. Copyright © 2016 John Wiley & Sons, Ltd.
In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by a hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4 and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks.</description><subject>atom-bond connectivity (ABC) index</subject><subject>Biochemistry</subject><subject>Chemical compounds</subject><subject>general Randić index</subject><subject>geometric-arithmetic (GA) index</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>HDN1(n)</subject><subject>HDN2(n)</subject><subject>hex-derived networks</subject><subject>hex‐derived networks, HDN1(n), HDN2(n)</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Molecular chemistry</subject><subject>Networks</subject><subject>Topology</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10F9LwzAUBfAgCs4p-BEKvvjSmTRp0-CTlDmFuYn_30Kb3Gq3dqlJ67Zvb8dkoODTfbg_DoeD0CnBA4JxcKGgGgQ8DvdQj2AhfBLEb_uoh-M48gWN6SE6cm6GcfejrIcupwuvMiWotkyt15jalOa9UGnp1dbUYJsCnGdy7wNWvgZbfIH2FtAsjZ27Y3SQp6WDk5_bR8_Xw6fkxh9PR7fJ1dhXNGKhT8JcMcU1DrSgGEfAAoq1ZizKKVEqBK2UYAGQgAnO4yjCUZBREmYky0BwTfvofJvbVfpswTWyKpyCskwXYFonSYwx44yHoqNnf-jMtHbRtZOEc4JDRrsNdoHKGucs5LK2RZXatSRYblaU3Ypys2JH_S1dFiWs_3UyGd799oVrYLXzqZ3LiFMeytfJSN5T8fI4eRjLhH4DMxSA8g</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Imran, Muhammad</creator><creator>Baig, Abdul Qudair</creator><creator>Ali, Haidar</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201603</creationdate><title>On molecular topological properties of hex-derived networks</title><author>Imran, Muhammad ; Baig, Abdul Qudair ; Ali, Haidar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3645-15fc4c7d02d93006e4230dd446f31cc5edcc942e124977866062b315b1bbe97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>atom-bond connectivity (ABC) index</topic><topic>Biochemistry</topic><topic>Chemical compounds</topic><topic>general Randić index</topic><topic>geometric-arithmetic (GA) index</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>HDN1(n)</topic><topic>HDN2(n)</topic><topic>hex-derived networks</topic><topic>hex‐derived networks, HDN1(n), HDN2(n)</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Molecular chemistry</topic><topic>Networks</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Baig, Abdul Qudair</creatorcontrib><creatorcontrib>Ali, Haidar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imran, Muhammad</au><au>Baig, Abdul Qudair</au><au>Ali, Haidar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On molecular topological properties of hex-derived networks</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2016-03</date><risdate>2016</risdate><volume>30</volume><issue>3</issue><spage>121</spage><epage>129</epage><pages>121-129</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>Topological indices are numerical parameters of a molecular graph, which characterize its topology and are usually graph invariant. In quantitative structure–activity relationship/quantitative structure–property relationship study, physico‐chemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks. Copyright © 2016 John Wiley & Sons, Ltd.
In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by a hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4 and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cem.2785</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of chemometrics, 2016-03, Vol.30 (3), p.121-129 |
issn | 0886-9383 1099-128X |
language | eng |
recordid | cdi_proquest_miscellaneous_1800474759 |
source | Access via Wiley Online Library |
subjects | atom-bond connectivity (ABC) index Biochemistry Chemical compounds general Randić index geometric-arithmetic (GA) index Graph theory Graphs HDN1(n) HDN2(n) hex-derived networks hex‐derived networks, HDN1(n), HDN2(n) Invariants Mathematical analysis Molecular chemistry Networks Topology |
title | On molecular topological properties of hex-derived networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20molecular%20topological%20properties%20of%20hex-derived%20networks&rft.jtitle=Journal%20of%20chemometrics&rft.au=Imran,%20Muhammad&rft.date=2016-03&rft.volume=30&rft.issue=3&rft.spage=121&rft.epage=129&rft.pages=121-129&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.2785&rft_dat=%3Cproquest_cross%3E1800474759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771054338&rft_id=info:pmid/&rfr_iscdi=true |