On molecular topological properties of hex-derived networks

Topological indices are numerical parameters of a molecular graph, which characterize its topology and are usually graph invariant. In quantitative structure–activity relationship/quantitative structure–property relationship study, physico‐chemical properties and topological indices such as Randić,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemometrics 2016-03, Vol.30 (3), p.121-129
Hauptverfasser: Imran, Muhammad, Baig, Abdul Qudair, Ali, Haidar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 3
container_start_page 121
container_title Journal of chemometrics
container_volume 30
creator Imran, Muhammad
Baig, Abdul Qudair
Ali, Haidar
description Topological indices are numerical parameters of a molecular graph, which characterize its topology and are usually graph invariant. In quantitative structure–activity relationship/quantitative structure–property relationship study, physico‐chemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks. Copyright © 2016 John Wiley & Sons, Ltd. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by a hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4 and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks.
doi_str_mv 10.1002/cem.2785
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800474759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800474759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3645-15fc4c7d02d93006e4230dd446f31cc5edcc942e124977866062b315b1bbe97d3</originalsourceid><addsrcrecordid>eNp10F9LwzAUBfAgCs4p-BEKvvjSmTRp0-CTlDmFuYn_30Kb3Gq3dqlJ67Zvb8dkoODTfbg_DoeD0CnBA4JxcKGgGgQ8DvdQj2AhfBLEb_uoh-M48gWN6SE6cm6GcfejrIcupwuvMiWotkyt15jalOa9UGnp1dbUYJsCnGdy7wNWvgZbfIH2FtAsjZ27Y3SQp6WDk5_bR8_Xw6fkxh9PR7fJ1dhXNGKhT8JcMcU1DrSgGEfAAoq1ZizKKVEqBK2UYAGQgAnO4yjCUZBREmYky0BwTfvofJvbVfpswTWyKpyCskwXYFonSYwx44yHoqNnf-jMtHbRtZOEc4JDRrsNdoHKGucs5LK2RZXatSRYblaU3Ypys2JH_S1dFiWs_3UyGd799oVrYLXzqZ3LiFMeytfJSN5T8fI4eRjLhH4DMxSA8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771054338</pqid></control><display><type>article</type><title>On molecular topological properties of hex-derived networks</title><source>Access via Wiley Online Library</source><creator>Imran, Muhammad ; Baig, Abdul Qudair ; Ali, Haidar</creator><creatorcontrib>Imran, Muhammad ; Baig, Abdul Qudair ; Ali, Haidar</creatorcontrib><description>Topological indices are numerical parameters of a molecular graph, which characterize its topology and are usually graph invariant. In quantitative structure–activity relationship/quantitative structure–property relationship study, physico‐chemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks. Copyright © 2016 John Wiley &amp; Sons, Ltd. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by a hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4 and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.2785</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>atom-bond connectivity (ABC) index ; Biochemistry ; Chemical compounds ; general Randić index ; geometric-arithmetic (GA) index ; Graph theory ; Graphs ; HDN1(n) ; HDN2(n) ; hex-derived networks ; hex‐derived networks, HDN1(n), HDN2(n) ; Invariants ; Mathematical analysis ; Molecular chemistry ; Networks ; Topology</subject><ispartof>Journal of chemometrics, 2016-03, Vol.30 (3), p.121-129</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3645-15fc4c7d02d93006e4230dd446f31cc5edcc942e124977866062b315b1bbe97d3</citedby><cites>FETCH-LOGICAL-c3645-15fc4c7d02d93006e4230dd446f31cc5edcc942e124977866062b315b1bbe97d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.2785$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.2785$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Baig, Abdul Qudair</creatorcontrib><creatorcontrib>Ali, Haidar</creatorcontrib><title>On molecular topological properties of hex-derived networks</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>Topological indices are numerical parameters of a molecular graph, which characterize its topology and are usually graph invariant. In quantitative structure–activity relationship/quantitative structure–property relationship study, physico‐chemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks. Copyright © 2016 John Wiley &amp; Sons, Ltd. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by a hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4 and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks.</description><subject>atom-bond connectivity (ABC) index</subject><subject>Biochemistry</subject><subject>Chemical compounds</subject><subject>general Randić index</subject><subject>geometric-arithmetic (GA) index</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>HDN1(n)</subject><subject>HDN2(n)</subject><subject>hex-derived networks</subject><subject>hex‐derived networks, HDN1(n), HDN2(n)</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Molecular chemistry</subject><subject>Networks</subject><subject>Topology</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10F9LwzAUBfAgCs4p-BEKvvjSmTRp0-CTlDmFuYn_30Kb3Gq3dqlJ67Zvb8dkoODTfbg_DoeD0CnBA4JxcKGgGgQ8DvdQj2AhfBLEb_uoh-M48gWN6SE6cm6GcfejrIcupwuvMiWotkyt15jalOa9UGnp1dbUYJsCnGdy7wNWvgZbfIH2FtAsjZ27Y3SQp6WDk5_bR8_Xw6fkxh9PR7fJ1dhXNGKhT8JcMcU1DrSgGEfAAoq1ZizKKVEqBK2UYAGQgAnO4yjCUZBREmYky0BwTfvofJvbVfpswTWyKpyCskwXYFonSYwx44yHoqNnf-jMtHbRtZOEc4JDRrsNdoHKGucs5LK2RZXatSRYblaU3Ypys2JH_S1dFiWs_3UyGd799oVrYLXzqZ3LiFMeytfJSN5T8fI4eRjLhH4DMxSA8g</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Imran, Muhammad</creator><creator>Baig, Abdul Qudair</creator><creator>Ali, Haidar</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201603</creationdate><title>On molecular topological properties of hex-derived networks</title><author>Imran, Muhammad ; Baig, Abdul Qudair ; Ali, Haidar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3645-15fc4c7d02d93006e4230dd446f31cc5edcc942e124977866062b315b1bbe97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>atom-bond connectivity (ABC) index</topic><topic>Biochemistry</topic><topic>Chemical compounds</topic><topic>general Randić index</topic><topic>geometric-arithmetic (GA) index</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>HDN1(n)</topic><topic>HDN2(n)</topic><topic>hex-derived networks</topic><topic>hex‐derived networks, HDN1(n), HDN2(n)</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Molecular chemistry</topic><topic>Networks</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Baig, Abdul Qudair</creatorcontrib><creatorcontrib>Ali, Haidar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imran, Muhammad</au><au>Baig, Abdul Qudair</au><au>Ali, Haidar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On molecular topological properties of hex-derived networks</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2016-03</date><risdate>2016</risdate><volume>30</volume><issue>3</issue><spage>121</spage><epage>129</epage><pages>121-129</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><abstract>Topological indices are numerical parameters of a molecular graph, which characterize its topology and are usually graph invariant. In quantitative structure–activity relationship/quantitative structure–property relationship study, physico‐chemical properties and topological indices such as Randić, atom–bond connectivity (ABC), and geometric–arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4, and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks. Copyright © 2016 John Wiley &amp; Sons, Ltd. In this paper, we study hex‐derived networks HDN1(n) and HDN2(n), which are generated by a hexagonal network of dimension n and derive analytical closed results of general Randić index Rα(G) for different values of α, for these networks of dimension n. We also compute the general first Zagreb, ABC, GA, ABC4 and GA5 indices for these hex‐derived networks for the first time and give closed formulae of these degree‐based indices for hex‐derived networks.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cem.2785</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0886-9383
ispartof Journal of chemometrics, 2016-03, Vol.30 (3), p.121-129
issn 0886-9383
1099-128X
language eng
recordid cdi_proquest_miscellaneous_1800474759
source Access via Wiley Online Library
subjects atom-bond connectivity (ABC) index
Biochemistry
Chemical compounds
general Randić index
geometric-arithmetic (GA) index
Graph theory
Graphs
HDN1(n)
HDN2(n)
hex-derived networks
hex‐derived networks, HDN1(n), HDN2(n)
Invariants
Mathematical analysis
Molecular chemistry
Networks
Topology
title On molecular topological properties of hex-derived networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20molecular%20topological%20properties%20of%20hex-derived%20networks&rft.jtitle=Journal%20of%20chemometrics&rft.au=Imran,%20Muhammad&rft.date=2016-03&rft.volume=30&rft.issue=3&rft.spage=121&rft.epage=129&rft.pages=121-129&rft.issn=0886-9383&rft.eissn=1099-128X&rft_id=info:doi/10.1002/cem.2785&rft_dat=%3Cproquest_cross%3E1800474759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771054338&rft_id=info:pmid/&rfr_iscdi=true