High-Sensitivity Measurement of Density by Magnetic Levitation
This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of m...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2016-03, Vol.88 (5), p.2666-2674 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2674 |
---|---|
container_issue | 5 |
container_start_page | 2666 |
container_title | Analytical chemistry (Washington) |
container_volume | 88 |
creator | Nemiroski, Alex Kumar, A. A Soh, Siowling Harburg, Daniel V Yu, Hai-Dong Whitesides, George M |
description | This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10–6 g/cm3. Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densitiesNylon spheres, PMMA spheres, and drug spheresdemonstrate the applicability of rotated Maglev to measuring the density of small (0.1–1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects. |
doi_str_mv | 10.1021/acs.analchem.5b03918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800473195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3983846931</sourcerecordid><originalsourceid>FETCH-LOGICAL-a492t-f38da4088adb9c4bd920edf3b2300a62123405bbe2e70cd49102707cba794eb03</originalsourceid><addsrcrecordid>eNqFkUtPwzAQhC0EouXxDxCKxIVLytpOYvuChMqjSEUcgLNlJ5s2VZOUOEHqv8ehLUgc4LSH_WZWO0PIGYURBUavTOpGpjLLdI7lKLbAFZV7ZEhjBmEiJdsnQwDgIRMAA3Lk3AKAUqDJIRmwRPZcPCTXk2I2D1-wckVbfBTtOnhC47oGS6zaoM6D26_VOrB-Y2YVtkUaTNGTpi3q6oQc5Gbp8HQ7j8nb_d3reBJOnx8exzfT0ESKtWHOZWYikNJkVqWRzRQDzHJuGQcwCaOMRxBbiwwFpFmk_IcCRGqNUBH6347J5cZ31dTvHbpWl4VLcbk0Fdad01QCRIJTFf-PikQpSZlQHr34hS7qrvGZ9pRgMgEuqaeiDZU2tXMN5nrVFKVp1pqC7qvQvgq9q0Jvq_Cy8615Z0vMvkW77D0AG6CX_xz-y_MT2lSWfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772860381</pqid></control><display><type>article</type><title>High-Sensitivity Measurement of Density by Magnetic Levitation</title><source>ACS Publications</source><creator>Nemiroski, Alex ; Kumar, A. A ; Soh, Siowling ; Harburg, Daniel V ; Yu, Hai-Dong ; Whitesides, George M</creator><creatorcontrib>Nemiroski, Alex ; Kumar, A. A ; Soh, Siowling ; Harburg, Daniel V ; Yu, Hai-Dong ; Whitesides, George M</creatorcontrib><description>This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density <10–4 g/cm3 for macroscopic objects (>mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10–6 g/cm3. Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densitiesNylon spheres, PMMA spheres, and drug spheresdemonstrate the applicability of rotated Maglev to measuring the density of small (0.1–1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b03918</identifier><identifier>PMID: 26815205</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Density ; Gravitation ; Gravity ; Magnetic fields ; Magnetic levitation ; Magnetic levitation systems ; Magnetic levitation vehicles ; Magnetization ; Magnets ; Materials science ; Measurement techniques ; Separation ; Spheres</subject><ispartof>Analytical chemistry (Washington), 2016-03, Vol.88 (5), p.2666-2674</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 1, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a492t-f38da4088adb9c4bd920edf3b2300a62123405bbe2e70cd49102707cba794eb03</citedby><cites>FETCH-LOGICAL-a492t-f38da4088adb9c4bd920edf3b2300a62123405bbe2e70cd49102707cba794eb03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5b03918$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.5b03918$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26815205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nemiroski, Alex</creatorcontrib><creatorcontrib>Kumar, A. A</creatorcontrib><creatorcontrib>Soh, Siowling</creatorcontrib><creatorcontrib>Harburg, Daniel V</creatorcontrib><creatorcontrib>Yu, Hai-Dong</creatorcontrib><creatorcontrib>Whitesides, George M</creatorcontrib><title>High-Sensitivity Measurement of Density by Magnetic Levitation</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density <10–4 g/cm3 for macroscopic objects (>mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10–6 g/cm3. Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densitiesNylon spheres, PMMA spheres, and drug spheresdemonstrate the applicability of rotated Maglev to measuring the density of small (0.1–1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.</description><subject>Density</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Magnetic fields</subject><subject>Magnetic levitation</subject><subject>Magnetic levitation systems</subject><subject>Magnetic levitation vehicles</subject><subject>Magnetization</subject><subject>Magnets</subject><subject>Materials science</subject><subject>Measurement techniques</subject><subject>Separation</subject><subject>Spheres</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPwzAQhC0EouXxDxCKxIVLytpOYvuChMqjSEUcgLNlJ5s2VZOUOEHqv8ehLUgc4LSH_WZWO0PIGYURBUavTOpGpjLLdI7lKLbAFZV7ZEhjBmEiJdsnQwDgIRMAA3Lk3AKAUqDJIRmwRPZcPCTXk2I2D1-wckVbfBTtOnhC47oGS6zaoM6D26_VOrB-Y2YVtkUaTNGTpi3q6oQc5Gbp8HQ7j8nb_d3reBJOnx8exzfT0ESKtWHOZWYikNJkVqWRzRQDzHJuGQcwCaOMRxBbiwwFpFmk_IcCRGqNUBH6347J5cZ31dTvHbpWl4VLcbk0Fdad01QCRIJTFf-PikQpSZlQHr34hS7qrvGZ9pRgMgEuqaeiDZU2tXMN5nrVFKVp1pqC7qvQvgq9q0Jvq_Cy8615Z0vMvkW77D0AG6CX_xz-y_MT2lSWfg</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Nemiroski, Alex</creator><creator>Kumar, A. A</creator><creator>Soh, Siowling</creator><creator>Harburg, Daniel V</creator><creator>Yu, Hai-Dong</creator><creator>Whitesides, George M</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20160301</creationdate><title>High-Sensitivity Measurement of Density by Magnetic Levitation</title><author>Nemiroski, Alex ; Kumar, A. A ; Soh, Siowling ; Harburg, Daniel V ; Yu, Hai-Dong ; Whitesides, George M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a492t-f38da4088adb9c4bd920edf3b2300a62123405bbe2e70cd49102707cba794eb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Density</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Magnetic fields</topic><topic>Magnetic levitation</topic><topic>Magnetic levitation systems</topic><topic>Magnetic levitation vehicles</topic><topic>Magnetization</topic><topic>Magnets</topic><topic>Materials science</topic><topic>Measurement techniques</topic><topic>Separation</topic><topic>Spheres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nemiroski, Alex</creatorcontrib><creatorcontrib>Kumar, A. A</creatorcontrib><creatorcontrib>Soh, Siowling</creatorcontrib><creatorcontrib>Harburg, Daniel V</creatorcontrib><creatorcontrib>Yu, Hai-Dong</creatorcontrib><creatorcontrib>Whitesides, George M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nemiroski, Alex</au><au>Kumar, A. A</au><au>Soh, Siowling</au><au>Harburg, Daniel V</au><au>Yu, Hai-Dong</au><au>Whitesides, George M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Sensitivity Measurement of Density by Magnetic Levitation</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>88</volume><issue>5</issue><spage>2666</spage><epage>2674</epage><pages>2666-2674</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>This paper presents methods that use Magnetic Levitation (MagLev) to measure very small differences in density of solid diamagnetic objects suspended in a paramagnetic medium. Previous work in this field has shown that, while it is a convenient method, standard MagLev (i.e., where the direction of magnetization and gravitational force are parallel) cannot resolve differences in density <10–4 g/cm3 for macroscopic objects (>mm) because (i) objects close in density prevent each other from reaching an equilibrium height due to hard contact and excluded volume, and (ii) using weaker magnets or reducing the magnetic susceptibility of the medium destabilizes the magnetic trap. The present work investigates the use of weak magnetic gradients parallel to the faces of the magnets as a means of increasing the sensitivity of MagLev without destabilization. Configuring the MagLev device in a rotated state (i.e., where the direction of magnetization and gravitational force are perpendicular) relative to the standard configuration enables simple measurements along the axes with the highest sensitivity to changes in density. Manipulating the distance of separation between the magnets or the lengths of the magnets (along the axis of measurement) enables the sensitivity to be tuned. These modifications enable an improvement in the resolution up to 100-fold over the standard configuration, and measurements with resolution down to 10–6 g/cm3. Three examples of characterizing the small differences in density among samples of materials having ostensibly indistinguishable densitiesNylon spheres, PMMA spheres, and drug spheresdemonstrate the applicability of rotated Maglev to measuring the density of small (0.1–1 mm) objects with high sensitivity. This capability will be useful in materials science, separations, and quality control of manufactured objects.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26815205</pmid><doi>10.1021/acs.analchem.5b03918</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2016-03, Vol.88 (5), p.2666-2674 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800473195 |
source | ACS Publications |
subjects | Density Gravitation Gravity Magnetic fields Magnetic levitation Magnetic levitation systems Magnetic levitation vehicles Magnetization Magnets Materials science Measurement techniques Separation Spheres |
title | High-Sensitivity Measurement of Density by Magnetic Levitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Sensitivity%20Measurement%20of%20Density%20by%20Magnetic%20Levitation&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Nemiroski,%20Alex&rft.date=2016-03-01&rft.volume=88&rft.issue=5&rft.spage=2666&rft.epage=2674&rft.pages=2666-2674&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b03918&rft_dat=%3Cproquest_cross%3E3983846931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772860381&rft_id=info:pmid/26815205&rfr_iscdi=true |